You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
5.4 KiB
90 lines
5.4 KiB
--- |
|
comments: true |
|
description: Learn to blur objects using Ultralytics YOLOv8 for privacy in images and videos. |
|
keywords: Ultralytics, YOLOv8, Object Detection, Object Blurring, Privacy Protection, Image Processing, Video Analysis, AI, Machine Learning |
|
--- |
|
|
|
# Object Blurring using Ultralytics YOLOv8 🚀 |
|
|
|
## What is Object Blurring? |
|
|
|
Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLOv8 model capabilities to identify and manipulate objects within a given scene. |
|
|
|
## Advantages of Object Blurring? |
|
|
|
- **Privacy Protection**: Object blurring is an effective tool for safeguarding privacy by concealing sensitive or personally identifiable information in images or videos. |
|
- **Selective Focus**: YOLOv8 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information. |
|
- **Real-time Processing**: YOLOv8's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments. |
|
|
|
!!! Example "Object Blurring using YOLOv8 Example" |
|
|
|
=== "Object Blurring" |
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.utils.plotting import Annotator, colors |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
names = model.names |
|
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
# Blur ratio |
|
blur_ratio = 50 |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("object_blurring_output.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, (w, h)) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
|
|
results = model.predict(im0, show=False) |
|
boxes = results[0].boxes.xyxy.cpu().tolist() |
|
clss = results[0].boxes.cls.cpu().tolist() |
|
annotator = Annotator(im0, line_width=2, example=names) |
|
|
|
if boxes is not None: |
|
for box, cls in zip(boxes, clss): |
|
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)]) |
|
|
|
obj = im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])] |
|
blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio)) |
|
|
|
im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = blur_obj |
|
|
|
cv2.imshow("ultralytics", im0) |
|
video_writer.write(im0) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
``` |
|
|
|
### Arguments `model.predict` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------------|----------------|------------------------|----------------------------------------------------------------------------| |
|
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos | |
|
| `conf` | `float` | `0.25` | object confidence threshold for detection | |
|
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS | |
|
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) | |
|
| `half` | `bool` | `False` | use half precision (FP16) | |
|
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu | |
|
| `max_det` | `int` | `300` | maximum number of detections per image | |
|
| `vid_stride` | `bool` | `False` | video frame-rate stride | |
|
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) | |
|
| `visualize` | `bool` | `False` | visualize model features | |
|
| `augment` | `bool` | `False` | apply image augmentation to prediction sources | |
|
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS | |
|
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | |
|
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks | |
|
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers |
|
|
|