12 KiB
comments | description | keywords |
---|---|---|
true | Learn how to use instance segmentation models with Ultralytics YOLO. Instructions on training, validation, image prediction, and model export. | yolov8, instance segmentation, Ultralytics, COCO dataset, image segmentation, object detection, model training, model validation, image prediction, model export |
Instance Segmentation
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.
The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
Watch: Run Segmentation with Pre-Trained Ultralytics YOLOv8 Model in Python.
!!! Tip "Tip"
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
Models
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.
Models download automatically from the latest Ultralytics release on first use.
Model | size (pixels) |
mAPbox 50-95 |
mAPmask 50-95 |
Speed CPU ONNX (ms) |
Speed A100 TensorRT (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-seg | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
YOLOv8s-seg | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
YOLOv8m-seg | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
YOLOv8l-seg | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
YOLOv8x-seg | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- mAPval values are for single-model single-scale on COCO val2017 dataset.
Reproduce byyolo val segment data=coco.yaml device=0
- Speed averaged over COCO val images using an Amazon EC2 P4d
instance.
Reproduce byyolo val segment data=coco128-seg.yaml batch=1 device=0|cpu
Train
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.
!!! Example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.yaml') # build a new model from YAML
model = YOLO('yolov8n-seg.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
```
Dataset format
YOLO segmentation dataset format can be found in detail in the Dataset Guide. To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use JSON2YOLO tool by Ultralytics.
Val
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the model
retains it's training data
and arguments as model attributes.
!!! Example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95(B)
metrics.box.map50 # map50(B)
metrics.box.map75 # map75(B)
metrics.box.maps # a list contains map50-95(B) of each category
metrics.seg.map # map50-95(M)
metrics.seg.map50 # map50(M)
metrics.seg.map75 # map75(M)
metrics.seg.maps # a list contains map50-95(M) of each category
```
=== "CLI"
```bash
yolo segment val model=yolov8n-seg.pt # val official model
yolo segment val model=path/to/best.pt # val custom model
```
Predict
Use a trained YOLOv8n-seg model to run predictions on images.
!!! Example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full predict
mode details in the Predict page.
Export
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
!!! Example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-seg.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained model
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-seg.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8-seg export formats are in the table below. You can predict or validate directly on exported models, i.e. yolo predict model=yolov8n-seg.onnx
. Usage examples are shown for your model after export completes.
Format | format Argument |
Model | Metadata | Arguments |
---|---|---|---|---|
PyTorch | - | yolov8n-seg.pt |
✅ | - |
TorchScript | torchscript |
yolov8n-seg.torchscript |
✅ | imgsz , optimize |
ONNX | onnx |
yolov8n-seg.onnx |
✅ | imgsz , half , dynamic , simplify , opset |
OpenVINO | openvino |
yolov8n-seg_openvino_model/ |
✅ | imgsz , half |
TensorRT | engine |
yolov8n-seg.engine |
✅ | imgsz , half , dynamic , simplify , workspace |
CoreML | coreml |
yolov8n-seg.mlpackage |
✅ | imgsz , half , int8 , nms |
TF SavedModel | saved_model |
yolov8n-seg_saved_model/ |
✅ | imgsz , keras |
TF GraphDef | pb |
yolov8n-seg.pb |
❌ | imgsz |
TF Lite | tflite |
yolov8n-seg.tflite |
✅ | imgsz , half , int8 |
TF Edge TPU | edgetpu |
yolov8n-seg_edgetpu.tflite |
✅ | imgsz |
TF.js | tfjs |
yolov8n-seg_web_model/ |
✅ | imgsz |
PaddlePaddle | paddle |
yolov8n-seg_paddle_model/ |
✅ | imgsz |
ncnn | ncnn |
yolov8n-seg_ncnn_model/ |
✅ | imgsz , half |
See full export
details in the Export page.