You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

3.9 KiB

This is the simplest way of simply using YOLOv8 models in a Python environment. It can be imported from the ultralytics module.

!!! example "Train"

=== "From pretrained(recommanded)"
    ```python
    from ultralytics import YOLO

    model = YOLO("yolov8n.pt") # pass any model type
    model.train(epochs=5)
    ```

=== "From scratch"
    ```python
    from ultralytics import YOLO

    model = YOLO("yolov8n.yaml")
    model.train(data="coco128.yaml", epochs=5)
    ```

=== "Resume"
    ```python
    TODO: Resume feature is under development and should be released soon.
    ```

!!! example "Val"

=== "Val after training"
    ```python
      from ultralytics import YOLO

      model = YOLO("yolov8n.yaml")
      model.train(data="coco128.yaml", epochs=5)
      model.val()  # It'll automatically evaluate the data you trained.
    ```

=== "Val independently"
    ```python
      from ultralytics import YOLO

      model = YOLO("model.pt")
      # It'll use the data yaml file in model.pt if you don't set data.
      model.val()
      # or you can set the data you want to val
      model.val(data="coco128.yaml")
    ```

!!! example "Predict"

=== "From source"
    ```python
    from ultralytics import YOLO

    model = YOLO("model.pt")
    model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
    model.predict(source="folder", show=True) # Display preds. Accepts all yolo predict arguments

    ```

=== "From image/ndarray/tensor"
    ```python
    # TODO, still working on it.
    ```


=== "Return outputs"
    ```python
    from ultralytics import YOLO

    model = YOLO("model.pt")
    outputs = model.predict(source="0", return_outputs=True) # treat predict as a Python generator
    for output in outputs:
      # each output here is a dict.
      # for detection
      print(output["det"])  # np.ndarray, (N, 6), xyxy, score, cls
      # for segmentation
      print(output["det"])  # np.ndarray, (N, 6), xyxy, score, cls
      print(output["segment"])  # List[np.ndarray] * N, bounding coordinates of masks
      # for classify
      print(output["prob"]) # np.ndarray, (num_class, ), cls prob

    ```

!!! note "Export and Deployment"

=== "Export, Fuse & info" 
    ```python
    from ultralytics import YOLO

    model = YOLO("model.pt")
    model.fuse()  
    model.info(verbose=True)  # Print model information
    model.export(format=)  # TODO: 

    ```
=== "Deployment"


More functionality coming soon

To know more about using YOLO models, refer Model class Reference

Model reference{ .md-button .md-button--primary}


Using Trainers

YOLO model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from BaseTrainer.

!!! tip "Detection Trainer Example"

    ```python
    from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor

    # trainer
    trainer = DetectionTrainer(overrides={})
    trainer.train()
    trained_model = trainer.best

    # Validator
    val = DetectionValidator(args=...)
    val(model=trained_model)

    # predictor
    pred = DetectionPredictor(overrides={})
    pred(source=SOURCE, model=trained_model)

    # resume from last weight
    overrides["resume"] = trainer.last
    trainer = detect.DetectionTrainer(overrides=overrides)
    ```

You can easily customize Trainers to support custom tasks or explore R&D ideas. Learn more about Customizing Trainers, Validators and Predictors to suit your project needs in the Customization Section.

Customization tutorials{ .md-button .md-button--primary}