You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
10 KiB
10 KiB
comments | description | keywords |
---|---|---|
true | 学习YOLOv8分类模型进行图像分类。获取关于预训练模型列表及如何训练、验证、预测、导出模型的详细信息。 | Ultralytics, YOLOv8, 图像分类, 预训练模型, YOLOv8n-cls, 训练, 验证, 预测, 模型导出 |
图像分类
图像分类是三项任务中最简单的,它涉及将整个图像分类为一组预定义类别中的一个。
图像分类器的输出是单个类别标签和一个置信度分数。当您只需要知道一幅图像属于哪个类别、而不需要知道该类别对象的位置或它们的确切形状时,图像分类非常有用。
!!! Tip "提示"
YOLOv8分类模型使用`-cls`后缀,即`yolov8n-cls.pt`,并预先训练在[ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml)上。
模型
这里展示了预训练的YOLOv8分类模型。Detect、Segment和Pose模型是在COCO数据集上预训练的,而分类模型则是在ImageNet数据集上预训练的。
模型会在首次使用时自动从Ultralytics的最新发布版本中下载。
模型 | 尺寸 (像素) |
准确率 top1 |
准确率 top5 |
速度 CPU ONNX (ms) |
速度 A100 TensorRT (ms) |
参数 (M) |
FLOPs (B) at 640 |
---|---|---|---|---|---|---|---|
YOLOv8n-cls | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
YOLOv8s-cls | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
YOLOv8m-cls | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
YOLOv8l-cls | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
YOLOv8x-cls | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- 准确率 是模型在ImageNet数据集验证集上的准确度。
通过yolo val classify data=path/to/ImageNet device=0
复现结果。 - 速度 是在使用Amazon EC2 P4d实例时,ImageNet验证图像的平均处理速度。
通过yolo val classify data=path/to/ImageNet batch=1 device=0|cpu
复现结果。
训练
在MNIST160数据集上训练YOLOv8n-cls模型100个时期,图像尺寸为64。有关可用参数的完整列表,请参见配置页面。
!!! Example "示例"
=== "Python"
```python
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n-cls.yaml') # 从YAML构建新模型
model = YOLO('yolov8n-cls.pt') # 加载预训练模型(推荐用于训练)
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # 从YAML构建并转移权重
# 训练模型
results = model.train(data='mnist160', epochs=100, imgsz=64)
```
=== "CLI"
```bash
# 从YAML构建新模型并从头开始训练
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
# 从预训练的*.pt模型开始训练
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
# 从YAML构建新模型,转移预训练权重并开始训练
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
```
数据集格式
YOLO分类数据集的格式详情请参见数据集指南。
验证
在MNIST160数据集上验证训练好的YOLOv8n-cls模型准确性。不需要传递任何参数,因为model
保留了它的训练data
和参数作为模型属性。
!!! Example "示例"
=== "Python"
```python
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n-cls.pt') # 加载官方模型
model = YOLO('path/to/best.pt') # 加载自定义模型
# 验证模型
metrics = model.val() # 无需参数,数据集和设置已记忆
metrics.top1 # top1准确率
metrics.top5 # top5准确率
```
=== "CLI"
```bash
yolo classify val model=yolov8n-cls.pt # 验证官方模型
yolo classify val model=path/to/best.pt # 验证自定义模型
```
预测
使用训练过的YOLOv8n-cls模型对图像进行预测。
!!! Example "示例"
=== "Python"
```python
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n-cls.pt') # 加载官方模型
model = YOLO('path/to/best.pt') # 加载自定义模型
# 使用模型进行预测
results = model('https://ultralytics.com/images/bus.jpg') # 对图像进行预测
```
=== "CLI"
```bash
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # 使用官方模型进行预测
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # 使用自定义模型进行预测
```
有关predict
模式的完整详细信息,请参见预测页面。
导出
将YOLOv8n-cls模型导出为其他格式,如ONNX、CoreML等。
!!! Example "示例"
=== "Python"
```python
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n-cls.pt') # 加载官方模型
model = YOLO('path/to/best.pt') # 加载自定义训练模型
# 导出模型
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-cls.pt format=onnx # 导出官方模型
yolo export model=path/to/best.pt format=onnx # 导出自定义训练模型
```
下表中提供了YOLOv8-cls模型可导出的格式。您可以直接在导出的模型上进行预测或验证,即yolo predict model=yolov8n-cls.onnx
。导出完成后,示例用法会显示您的模型。
格式 | format 参数 |
模型 | 元数据 | 参数 |
---|---|---|---|---|
PyTorch | - | yolov8n-cls.pt |
✅ | - |
TorchScript | torchscript |
yolov8n-cls.torchscript |
✅ | imgsz , optimize |
ONNX | onnx |
yolov8n-cls.onnx |
✅ | imgsz , half , dynamic , simplify , opset |
OpenVINO | openvino |
yolov8n-cls_openvino_model/ |
✅ | imgsz , half |
TensorRT | engine |
yolov8n-cls.engine |
✅ | imgsz , half , dynamic , simplify , workspace |
CoreML | coreml |
yolov8n-cls.mlpackage |
✅ | imgsz , half , int8 , nms |
TF SavedModel | saved_model |
yolov8n-cls_saved_model/ |
✅ | imgsz , keras |
TF GraphDef | pb |
yolov8n-cls.pb |
❌ | imgsz |
TF Lite | tflite |
yolov8n-cls.tflite |
✅ | imgsz , half , int8 |
TF Edge TPU | edgetpu |
yolov8n-cls_edgetpu.tflite |
✅ | imgsz |
TF.js | tfjs |
yolov8n-cls_web_model/ |
✅ | imgsz |
PaddlePaddle | paddle |
yolov8n-cls_paddle_model/ |
✅ | imgsz |
ncnn | ncnn |
yolov8n-cls_ncnn_model/ |
✅ | imgsz , half |
有关export
的完整详细信息,请参见导出页面。