You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Glenn Jocher 808984c6cf
`ultralytics 8.1.0` YOLOv8 Oriented Bounding Box (OBB) release (#7463)
10 months ago
..
YOLOv8-CPP-Inference `ultralytics 8.0.155` allow `imgsz` and `batch` resume changes (#4366) 1 year ago
YOLOv8-LibTorch-CPP-Inference Add YOLOv8 LibTorch C++ inference example (#7090) 11 months ago
YOLOv8-ONNXRuntime `ultralytics 8.0.239` Ultralytics Actions and `hub-sdk` adoption (#7431) 10 months ago
YOLOv8-ONNXRuntime-CPP `ultralytics 8.1.0` YOLOv8 Oriented Bounding Box (OBB) release (#7463) 10 months ago
YOLOv8-ONNXRuntime-Rust `ultralytics 8.0.224` Counting and Heatmaps updates (#6855) 11 months ago
YOLOv8-OpenCV-ONNX-Python `ultralytics 8.0.239` Ultralytics Actions and `hub-sdk` adoption (#7431) 10 months ago
YOLOv8-OpenCV-int8-tflite-Python `ultralytics 8.0.239` Ultralytics Actions and `hub-sdk` adoption (#7431) 10 months ago
YOLOv8-Region-Counter `ultralytics 8.1.0` YOLOv8 Oriented Bounding Box (OBB) release (#7463) 10 months ago
YOLOv8-SAHI-Inference-Video `ultralytics 8.0.239` Ultralytics Actions and `hub-sdk` adoption (#7431) 10 months ago
YOLOv8-Segmentation-ONNXRuntime-Python `ultralytics 8.0.239` Ultralytics Actions and `hub-sdk` adoption (#7431) 10 months ago
README.md YOLOv8 INT8 TFLite Inference Example (#7317) 10 months ago
heatmaps.ipynb `ultralytics 8.0.237` `cv2.CAP_PROP` fix and `in_counts` and `out_counts` displays (#7380) 10 months ago
hub.ipynb `ultralytics 8.0.231` use new `pyproject.toml` (#7185) 11 months ago
object_counting.ipynb `ultralytics 8.0.237` `cv2.CAP_PROP` fix and `in_counts` and `out_counts` displays (#7380) 10 months ago
object_tracking.ipynb `ultralytics 8.0.237` `cv2.CAP_PROP` fix and `in_counts` and `out_counts` displays (#7380) 10 months ago
tutorial.ipynb `ultralytics 8.1.0` YOLOv8 Oriented Bounding Box (OBB) release (#7463) 10 months ago

README.md

Ultralytics YOLOv8 Example Applications

This repository features a collection of real-world applications and walkthroughs, provided as either Python files or notebooks. Explore the examples below to see how YOLOv8 can be integrated into various applications.

Ultralytics YOLO Example Applications

Title Format Contributor
YOLO ONNX Detection Inference with C++ C++/ONNX Justas Bartnykas
YOLO OpenCV ONNX Detection Python OpenCV/Python/ONNX Farid Inawan
YOLOv8 .NET ONNX ImageSharp C#/ONNX/ImageSharp Compunet
YOLO .Net ONNX Detection C# C# .Net Samuel Stainback
YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream) Python Lakshantha
YOLOv8 ONNXRuntime Python Python/ONNXRuntime Semih Demirel
YOLOv8 ONNXRuntime CPP C++/ONNXRuntime DennisJcy, Onuralp Sezer
RTDETR ONNXRuntime C# C#/ONNX Kayzwer
YOLOv8 SAHI Video Inference Python Muhammad Rizwan Munawar
YOLOv8 Region Counter Python Muhammad Rizwan Munawar
YOLOv8 Segmentation ONNXRuntime Python Python/ONNXRuntime jamjamjon
YOLOv8 LibTorch CPP C++/LibTorch Myyura
YOLOv8 OpenCV INT8 TFLite Python Python Wamiq Raza

How to Contribute

We greatly appreciate contributions from the community, including examples, applications, and guides. If you'd like to contribute, please follow these guidelines:

  1. Create a pull request (PR) with the title prefix [Example], adding your new example folder to the examples/ directory within the repository.
  2. Make sure your project adheres to the following standards:
    • Makes use of the ultralytics package.
    • Includes a README.md with clear instructions for setting up and running the example.
    • Refrains from adding large files or dependencies unless they are absolutely necessary for the example.
    • Contributors should be willing to provide support for their examples and address related issues.

For more detailed information and guidance on contributing, please visit our contribution documentation.

If you encounter any questions or concerns regarding these guidelines, feel free to open a PR or an issue in the repository, and we will assist you in the contribution process.