You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
7.6 KiB
139 lines
7.6 KiB
--- |
|
comments: true |
|
description: Object Counting Using Ultralytics YOLOv8 |
|
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK |
|
--- |
|
|
|
# Object Counting using Ultralytics YOLOv8 🚀 |
|
|
|
## What is Object Counting? |
|
|
|
Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities. |
|
|
|
## Advantages of Object Counting? |
|
|
|
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management. |
|
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection. |
|
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains. |
|
|
|
## Real World Applications |
|
|
|
| Logistics | Aquaculture | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) | |
|
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 | |
|
|
|
!!! Example "Object Counting Example" |
|
|
|
=== "Object Counting" |
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
|
|
counter = object_counter.ObjectCounter() # Init Object Counter |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] |
|
counter.set_args(view_img=True, |
|
reg_pts=region_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
exit(0) |
|
tracks = model.track(im0, persist=True, show=False) |
|
im0 = counter.start_counting(im0, tracks) |
|
``` |
|
|
|
=== "Object Counting with Specific Classes" |
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
|
|
classes_to_count = [0, 2] |
|
counter = object_counter.ObjectCounter() # Init Object Counter |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] |
|
counter.set_args(view_img=True, |
|
reg_pts=region_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
exit(0) |
|
tracks = model.track(im0, persist=True, |
|
show=False, |
|
classes=classes_to_count) |
|
im0 = counter.start_counting(im0, tracks) |
|
``` |
|
|
|
=== "Object Counting with Save Output" |
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
|
|
video_writer = cv2.VideoWriter("object_counting.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
int(cap.get(5)), |
|
(int(cap.get(3)), int(cap.get(4)))) |
|
|
|
counter = object_counter.ObjectCounter() # Init Object Counter |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] |
|
counter.set_args(view_img=True, |
|
reg_pts=region_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
exit(0) |
|
tracks = model.track(im0, persist=True, show=False) |
|
im0 = counter.start_counting(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
video_writer.release() |
|
``` |
|
|
|
???+ tip "Region is Movable" |
|
|
|
You can move the region anywhere in the frame by clicking on its edges |
|
|
|
### Optional Arguments `set_args` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------------|---------|--------------------------------------------------|---------------------------------------| |
|
| view_img | `bool` | `False` | Display the frame with counts | |
|
| line_thickness | `int` | `2` | Increase the thickness of count value | |
|
| reg_pts | `list` | `(20, 400), (1080, 404), (1080, 360), (20, 360)` | Region Area Points | |
|
| classes_names | `dict` | `model.model.names` | Classes Names Dict | |
|
| region_color | `tuple` | `(0, 255, 0)` | Region Area Color | |
|
| track_thickness | `int` | `2` | Tracking line thickness | |
|
| draw_tracks | `bool` | `False` | Draw Tracks lines | |
|
|
|
### Arguments `model.track` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------|---------|----------------|-------------------------------------------------------------| |
|
| `source` | `im0` | `None` | source directory for images or videos | |
|
| `persist` | `bool` | `False` | persisting tracks between frames | |
|
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' | |
|
| `conf` | `float` | `0.3` | Confidence Threshold | |
|
| `iou` | `float` | `0.5` | IOU Threshold | |
|
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
|
|
|