You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

229 lines
8.6 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import argparse
import cv2
import numpy as np
import onnxruntime as ort
import torch
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_requirements, check_yaml
class YOLOv8:
"""YOLOv8 object detection model class for handling inference and visualization."""
def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
"""
Initializes an instance of the YOLOv8 class.
Args:
onnx_model: Path to the ONNX model.
input_image: Path to the input image.
confidence_thres: Confidence threshold for filtering detections.
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
"""
self.onnx_model = onnx_model
self.input_image = input_image
self.confidence_thres = confidence_thres
self.iou_thres = iou_thres
# Load the class names from the COCO dataset
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
# Generate a color palette for the classes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
def draw_detections(self, img, box, score, class_id):
"""
Draws bounding boxes and labels on the input image based on the detected objects.
Args:
img: The input image to draw detections on.
box: Detected bounding box.
score: Corresponding detection score.
class_id: Class ID for the detected object.
Returns:
None
"""
# Extract the coordinates of the bounding box
x1, y1, w, h = box
# Retrieve the color for the class ID
color = self.color_palette[class_id]
# Draw the bounding box on the image
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
# Create the label text with class name and score
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Calculate the position of the label text
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv2.rectangle(
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED
)
# Draw the label text on the image
cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
def preprocess(self):
"""
Preprocesses the input image before performing inference.
Returns:
image_data: Preprocessed image data ready for inference.
"""
# Read the input image using OpenCV
self.img = cv2.imread(self.input_image)
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
# Convert the image color space from BGR to RGB
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
# Resize the image to match the input shape
img = cv2.resize(img, (self.input_width, self.input_height))
# Normalize the image data by dividing it by 255.0
image_data = np.array(img) / 255.0
# Transpose the image to have the channel dimension as the first dimension
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
# Expand the dimensions of the image data to match the expected input shape
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
# Return the preprocessed image data
return image_data
def postprocess(self, input_image, output):
"""
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
Args:
input_image (numpy.ndarray): The input image.
output (numpy.ndarray): The output of the model.
Returns:
numpy.ndarray: The input image with detections drawn on it.
"""
# Transpose and squeeze the output to match the expected shape
outputs = np.transpose(np.squeeze(output[0]))
# Get the number of rows in the outputs array
rows = outputs.shape[0]
# Lists to store the bounding boxes, scores, and class IDs of the detections
boxes = []
scores = []
class_ids = []
# Calculate the scaling factors for the bounding box coordinates
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
# Iterate over each row in the outputs array
for i in range(rows):
# Extract the class scores from the current row
classes_scores = outputs[i][4:]
# Find the maximum score among the class scores
max_score = np.amax(classes_scores)
# If the maximum score is above the confidence threshold
if max_score >= self.confidence_thres:
# Get the class ID with the highest score
class_id = np.argmax(classes_scores)
# Extract the bounding box coordinates from the current row
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
# Calculate the scaled coordinates of the bounding box
left = int((x - w / 2) * x_factor)
top = int((y - h / 2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
# Add the class ID, score, and box coordinates to the respective lists
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
# Apply non-maximum suppression to filter out overlapping bounding boxes
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
# Iterate over the selected indices after non-maximum suppression
for i in indices:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
# Draw the detection on the input image
self.draw_detections(input_image, box, score, class_id)
# Return the modified input image
return input_image
def main(self):
"""
Performs inference using an ONNX model and returns the output image with drawn detections.
Returns:
output_img: The output image with drawn detections.
"""
# Create an inference session using the ONNX model and specify execution providers
session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
# Get the model inputs
model_inputs = session.get_inputs()
# Store the shape of the input for later use
input_shape = model_inputs[0].shape
self.input_width = input_shape[2]
self.input_height = input_shape[3]
# Preprocess the image data
img_data = self.preprocess()
# Run inference using the preprocessed image data
outputs = session.run(None, {model_inputs[0].name: img_data})
# Perform post-processing on the outputs to obtain output image.
return self.postprocess(self.img, outputs) # output image
if __name__ == "__main__":
# Create an argument parser to handle command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.")
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
args = parser.parse_args()
# Check the requirements and select the appropriate backend (CPU or GPU)
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
# Create an instance of the YOLOv8 class with the specified arguments
detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
# Perform object detection and obtain the output image
output_image = detection.main()
# Display the output image in a window
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
cv2.imshow("Output", output_image)
# Wait for a key press to exit
cv2.waitKey(0)