You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Glenn Jocher
0473da00a9
|
1 year ago | |
---|---|---|
.. | ||
CMakeLists.txt | 1 year ago | |
README.md | 1 year ago | |
inference.cpp | 1 year ago | |
inference.h | 1 year ago | |
main.cpp | 1 year ago |
README.md
YOLOv8 OnnxRuntime C++
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
Benefits ✨
- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports FP32 and FP16 CUDA acceleration.
Exporting YOLOv8 Models 📦
To export YOLOv8 models, use the following Python script:
from ultralytics import YOLO
# Load a YOLOv8 model
model = YOLO("yolov8n.pt")
# Export the model
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
Alternatively, you can use the following command for exporting the model in the terminal
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
Download COCO.yaml file 📂
In order to run example, you also need to download coco.yaml. You can download the file manually from here
Dependencies ⚙️
Dependency | Version |
---|---|
Onnxruntime(linux,windows,macos) | >=1.14.1 |
OpenCV | >=4.0.0 |
C++ Standard | >=17 |
Cmake | >=3.5 |
Cuda (Optional) | >=11.4 <12.0 |
cuDNN (Cuda required) | =8 |
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
Build 🛠️
- Clone the repository to your local machine.
- Navigate to the root directory of the repository.
- Create a build directory and navigate to it:
mkdir build && cd build
- Run CMake to generate the build files:
cmake ..
- Build the project:
make
- The built executable should now be located in the
build
directory.
Usage 🚀
// CPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, false};
// GPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, 0.1, 0.5, true};
// Load your image
cv::Mat img = cv::imread(img_path);
// Init Inference Session
char* ret = yoloDetector->CreateSession(params);
ret = yoloDetector->RunSession(img, res);
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.