You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
8.3 KiB
228 lines
8.3 KiB
--- |
|
comments: true |
|
description: 'Learn how to use Ultralytics YOLO through Command Line: train models, run predictions and exports models to different formats easily using terminal commands.' |
|
keywords: Ultralytics, YOLO, CLI, train, validation, prediction, command line interface, YOLO CLI, YOLO terminal, model training, prediction, exporting |
|
--- |
|
|
|
# Command Line Interface Usage |
|
|
|
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. |
|
CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command. |
|
|
|
!!! example |
|
|
|
=== "Syntax" |
|
|
|
Ultralytics `yolo` commands use the following syntax: |
|
```bash |
|
yolo TASK MODE ARGS |
|
|
|
Where TASK (optional) is one of [detect, segment, classify] |
|
MODE (required) is one of [train, val, predict, export, track] |
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. |
|
``` |
|
See all ARGS in the full [Configuration Guide](./cfg.md) or with `yolo cfg` |
|
|
|
=== "Train" |
|
|
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01 |
|
```bash |
|
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
=== "Predict" |
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320: |
|
```bash |
|
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 |
|
``` |
|
|
|
=== "Val" |
|
|
|
Val a pretrained detection model at batch-size 1 and image size 640: |
|
```bash |
|
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 |
|
``` |
|
|
|
=== "Export" |
|
|
|
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) |
|
```bash |
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 |
|
``` |
|
|
|
=== "Special" |
|
|
|
Run special commands to see version, view settings, run checks and more: |
|
```bash |
|
yolo help |
|
yolo checks |
|
yolo version |
|
yolo settings |
|
yolo copy-cfg |
|
yolo cfg |
|
``` |
|
|
|
Where: |
|
|
|
- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess |
|
the `TASK` from the model type. |
|
- `MODE` (required) is one of `[train, val, predict, export, track]` |
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. |
|
For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` |
|
GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml). |
|
|
|
!!! warning "Warning" |
|
|
|
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` beteen arguments. |
|
|
|
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅ |
|
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ |
|
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ |
|
|
|
## Train |
|
|
|
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see |
|
the [Configuration](cfg.md) page. |
|
|
|
!!! example "Example" |
|
|
|
=== "Train" |
|
|
|
Start training YOLOv8n on COCO128 for 100 epochs at image-size 640. |
|
```bash |
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 |
|
``` |
|
|
|
=== "Resume" |
|
|
|
Resume an interrupted training. |
|
```bash |
|
yolo detect train resume model=last.pt |
|
``` |
|
|
|
## Val |
|
|
|
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's |
|
training `data` and arguments as model attributes. |
|
|
|
!!! example "Example" |
|
|
|
=== "Official" |
|
|
|
Validate an official YOLOv8n model. |
|
```bash |
|
yolo detect val model=yolov8n.pt |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Validate a custom-trained model. |
|
```bash |
|
yolo detect val model=path/to/best.pt |
|
``` |
|
|
|
## Predict |
|
|
|
Use a trained YOLOv8n model to run predictions on images. |
|
|
|
!!! example "Example" |
|
|
|
=== "Official" |
|
|
|
Predict with an official YOLOv8n model. |
|
```bash |
|
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Predict with a custom model. |
|
```bash |
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' |
|
``` |
|
|
|
## Export |
|
|
|
Export a YOLOv8n model to a different format like ONNX, CoreML, etc. |
|
|
|
!!! example "Example" |
|
|
|
=== "Official" |
|
|
|
Export an official YOLOv8n model to ONNX format. |
|
```bash |
|
yolo export model=yolov8n.pt format=onnx |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Export a custom-trained model to ONNX format. |
|
```bash |
|
yolo export model=path/to/best.pt format=onnx |
|
``` |
|
|
|
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, |
|
i.e. `format='onnx'` or `format='engine'`. |
|
|
|
| Format | `format` Argument | Model | Metadata | |
|
|--------------------------------------------------------------------|-------------------|---------------------------|----------| |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | |
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | |
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | |
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | |
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | |
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ | |
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | |
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | |
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | |
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | |
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | |
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | |
|
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | |
|
|
|
--- |
|
|
|
## Overriding default arguments |
|
|
|
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs. |
|
|
|
!!! tip "" |
|
|
|
=== "Train" |
|
Train a detection model for `10 epochs` with `learning_rate` of `0.01` |
|
```bash |
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
=== "Predict" |
|
Predict a YouTube video using a pretrained segmentation model at image size 320: |
|
```bash |
|
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 |
|
``` |
|
|
|
=== "Val" |
|
Validate a pretrained detection model at batch-size 1 and image size 640: |
|
```bash |
|
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 |
|
``` |
|
|
|
--- |
|
|
|
## Overriding default config file |
|
|
|
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, |
|
i.e. `cfg=custom.yaml`. |
|
|
|
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command. |
|
|
|
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, |
|
like `imgsz=320` in this example: |
|
|
|
!!! example "" |
|
|
|
=== "CLI" |
|
```bash |
|
yolo copy-cfg |
|
yolo cfg=default_copy.yaml imgsz=320 |
|
```
|
|
|