You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
586 lines
17 KiB
586 lines
17 KiB
--- |
|
comments: true |
|
description: Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration. |
|
keywords: Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration |
|
--- |
|
|
|
# Ultralytics HUB Inference API |
|
|
|
After you [train a model](./models.md#train-model), you can use the [Shared Inference API](#shared-inference-api) for free. If you are a [Pro](./pro.md) user, you can access the [Dedicated Inference API](#dedicated-inference-api). The [Ultralytics HUB](https://www.ultralytics.com/hub) Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally. |
|
|
|
![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Dedicated Inference API card and one to the Shared Inference API card](https://github.com/ultralytics/docs/releases/download/0/hub-inference-api-card.avif) |
|
|
|
<p align="center"> |
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/OpWpBI35A5Y" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Watch:</strong> Ultralytics HUB Inference API Walkthrough |
|
</p> |
|
|
|
## Dedicated Inference API |
|
|
|
In response to high demand and widespread interest, we are thrilled to unveil the [Ultralytics HUB](https://www.ultralytics.com/hub) Dedicated Inference API, offering single-click deployment in a dedicated environment for our [Pro](./pro.md) users! |
|
|
|
!!! note |
|
|
|
We are excited to offer this feature FREE during our public beta as part of the [Pro Plan](./pro.md), with paid tiers possible in the future. |
|
|
|
- **Global Coverage:** Deployed across 38 regions worldwide, ensuring low-latency access from any location. [See the full list of Google Cloud regions](https://cloud.google.com/about/locations). |
|
- **Google Cloud Run-Backed:** Backed by Google Cloud Run, providing infinitely scalable and highly reliable infrastructure. |
|
- **High Speed:** Sub-100ms latency is possible for YOLOv8n inference at 640 resolution from nearby regions based on Ultralytics testing. |
|
- **Enhanced Security:** Provides robust security features to protect your data and ensure compliance with industry standards. [Learn more about Google Cloud security](https://cloud.google.com/security). |
|
|
|
To use the [Ultralytics HUB](https://www.ultralytics.com/hub) Dedicated Inference API, click on the **Start Endpoint** button. Next, use the unique endpoint URL as described in the guides below. |
|
|
|
![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Start Endpoint button in Dedicated Inference API card](https://github.com/ultralytics/docs/releases/download/0/ultralytics-hub-dedicated-inference-api.avif) |
|
|
|
!!! tip |
|
|
|
Choose the region with the lowest latency for the best performance as described in the [documentation](https://docs.ultralytics.com/reference/hub/google/__init__/). |
|
|
|
To shut down the dedicated endpoint, click on the **Stop Endpoint** button. |
|
|
|
![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Stop Endpoint button in Dedicated Inference API card](https://github.com/ultralytics/docs/releases/download/0/deploy-tab-model-page-stop-endpoint.avif) |
|
|
|
## Shared Inference API |
|
|
|
To use the [Ultralytics HUB](https://www.ultralytics.com/hub) Shared Inference API, follow the guides below. |
|
|
|
Free users have the following usage limits: |
|
|
|
- 100 calls / hour |
|
- 1000 calls / month |
|
|
|
[Pro](./pro.md) users have the following usage limits: |
|
|
|
- 1000 calls / hour |
|
- 10000 calls / month |
|
|
|
## Python |
|
|
|
To access the [Ultralytics HUB](https://www.ultralytics.com/hub) Inference API using Python, use the following code: |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
!!! note |
|
|
|
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on. |
|
|
|
If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well. |
|
|
|
## cURL |
|
|
|
To access the [Ultralytics HUB](https://www.ultralytics.com/hub) Inference API using cURL, use the following code: |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
!!! note |
|
|
|
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on. |
|
|
|
If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well. |
|
|
|
## Arguments |
|
|
|
See the table below for a full list of available inference arguments. |
|
|
|
| Argument | Default | Type | Description | |
|
| -------- | ------- | ------- | -------------------------------------------------------------------- | |
|
| `file` | | `file` | Image or video file to be used for inference. | |
|
| `imgsz` | `640` | `int` | Size of the input image, valid range is `32` - `1280` pixels. | |
|
| `conf` | `0.25` | `float` | Confidence threshold for predictions, valid range `0.01` - `1.0`. | |
|
| `iou` | `0.45` | `float` | Intersection over Union (IoU) threshold, valid range `0.0` - `0.95`. | |
|
|
|
## Response |
|
|
|
The [Ultralytics HUB](https://www.ultralytics.com/hub) Inference API returns a JSON response. |
|
|
|
### Classification |
|
|
|
!!! example "Classification Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-cls.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
"images": [ |
|
{ |
|
"results": [ |
|
{ |
|
"class": 0, |
|
"name": "person", |
|
"confidence": 0.92 |
|
} |
|
], |
|
"shape": [ |
|
750, |
|
600 |
|
], |
|
"speed": { |
|
"inference": 200.8, |
|
"postprocess": 0.8, |
|
"preprocess": 2.8 |
|
} |
|
} |
|
], |
|
"metadata": ... |
|
} |
|
``` |
|
|
|
### Detection |
|
|
|
!!! example "Detection Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
"images": [ |
|
{ |
|
"results": [ |
|
{ |
|
"class": 0, |
|
"name": "person", |
|
"confidence": 0.92, |
|
"box": { |
|
"x1": 118, |
|
"x2": 416, |
|
"y1": 112, |
|
"y2": 660 |
|
} |
|
} |
|
], |
|
"shape": [ |
|
750, |
|
600 |
|
], |
|
"speed": { |
|
"inference": 200.8, |
|
"postprocess": 0.8, |
|
"preprocess": 2.8 |
|
} |
|
} |
|
], |
|
"metadata": ... |
|
} |
|
``` |
|
|
|
### OBB |
|
|
|
!!! example "OBB Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-obb.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
"images": [ |
|
{ |
|
"results": [ |
|
{ |
|
"class": 0, |
|
"name": "person", |
|
"confidence": 0.92, |
|
"box": { |
|
"x1": 374.85565, |
|
"x2": 392.31824, |
|
"x3": 412.81805, |
|
"x4": 395.35547, |
|
"y1": 264.40704, |
|
"y2": 267.45728, |
|
"y3": 150.0966, |
|
"y4": 147.04634 |
|
} |
|
} |
|
], |
|
"shape": [ |
|
750, |
|
600 |
|
], |
|
"speed": { |
|
"inference": 200.8, |
|
"postprocess": 0.8, |
|
"preprocess": 2.8 |
|
} |
|
} |
|
], |
|
"metadata": ... |
|
} |
|
``` |
|
|
|
### Segmentation |
|
|
|
!!! example "Segmentation Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-seg.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
"images": [ |
|
{ |
|
"results": [ |
|
{ |
|
"class": 0, |
|
"name": "person", |
|
"confidence": 0.92, |
|
"box": { |
|
"x1": 118, |
|
"x2": 416, |
|
"y1": 112, |
|
"y2": 660 |
|
}, |
|
"segments": { |
|
"x": [ |
|
266.015625, |
|
266.015625, |
|
258.984375, |
|
... |
|
], |
|
"y": [ |
|
110.15625, |
|
113.67188262939453, |
|
120.70311737060547, |
|
... |
|
] |
|
} |
|
} |
|
], |
|
"shape": [ |
|
750, |
|
600 |
|
], |
|
"speed": { |
|
"inference": 200.8, |
|
"postprocess": 0.8, |
|
"preprocess": 2.8 |
|
} |
|
} |
|
], |
|
"metadata": ... |
|
} |
|
``` |
|
|
|
### Pose |
|
|
|
!!! example "Pose Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-pose.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "file=@/path/to/image.jpg" \ |
|
-F "imgsz=640" \ |
|
-F "conf=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"file": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
"images": [ |
|
{ |
|
"results": [ |
|
{ |
|
"class": 0, |
|
"name": "person", |
|
"confidence": 0.92, |
|
"box": { |
|
"x1": 118, |
|
"x2": 416, |
|
"y1": 112, |
|
"y2": 660 |
|
}, |
|
"keypoints": { |
|
"visible": [ |
|
0.9909399747848511, |
|
0.8162999749183655, |
|
0.9872099757194519, |
|
... |
|
], |
|
"x": [ |
|
316.3871765136719, |
|
315.9374694824219, |
|
304.878173828125, |
|
... |
|
], |
|
"y": [ |
|
156.4207763671875, |
|
148.05775451660156, |
|
144.93240356445312, |
|
... |
|
] |
|
} |
|
} |
|
], |
|
"shape": [ |
|
750, |
|
600 |
|
], |
|
"speed": { |
|
"inference": 200.8, |
|
"postprocess": 0.8, |
|
"preprocess": 2.8 |
|
} |
|
} |
|
], |
|
"metadata": ... |
|
} |
|
```
|
|
|