You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
13 KiB
342 lines
13 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import argparse |
|
|
|
import cv2 |
|
import numpy as np |
|
import onnxruntime as ort |
|
|
|
from ultralytics.utils import ASSETS, yaml_load |
|
from ultralytics.utils.checks import check_yaml |
|
from ultralytics.utils.plotting import Colors |
|
|
|
|
|
class YOLOv8Seg: |
|
"""YOLOv8 segmentation model.""" |
|
|
|
def __init__(self, onnx_model): |
|
""" |
|
Initialization. |
|
|
|
Args: |
|
onnx_model (str): Path to the ONNX model. |
|
""" |
|
|
|
# Build Ort session |
|
self.session = ort.InferenceSession( |
|
onnx_model, |
|
providers=["CUDAExecutionProvider", "CPUExecutionProvider"] |
|
if ort.get_device() == "GPU" |
|
else ["CPUExecutionProvider"], |
|
) |
|
|
|
# Numpy dtype: support both FP32 and FP16 onnx model |
|
self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single |
|
|
|
# Get model width and height(YOLOv8-seg only has one input) |
|
self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:] |
|
|
|
# Load COCO class names |
|
self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] |
|
|
|
# Create color palette |
|
self.color_palette = Colors() |
|
|
|
def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32): |
|
""" |
|
The whole pipeline: pre-process -> inference -> post-process. |
|
|
|
Args: |
|
im0 (Numpy.ndarray): original input image. |
|
conf_threshold (float): confidence threshold for filtering predictions. |
|
iou_threshold (float): iou threshold for NMS. |
|
nm (int): the number of masks. |
|
|
|
Returns: |
|
boxes (List): list of bounding boxes. |
|
segments (List): list of segments. |
|
masks (np.ndarray): [N, H, W], output masks. |
|
""" |
|
|
|
# Pre-process |
|
im, ratio, (pad_w, pad_h) = self.preprocess(im0) |
|
|
|
# Ort inference |
|
preds = self.session.run(None, {self.session.get_inputs()[0].name: im}) |
|
|
|
# Post-process |
|
boxes, segments, masks = self.postprocess( |
|
preds, |
|
im0=im0, |
|
ratio=ratio, |
|
pad_w=pad_w, |
|
pad_h=pad_h, |
|
conf_threshold=conf_threshold, |
|
iou_threshold=iou_threshold, |
|
nm=nm, |
|
) |
|
return boxes, segments, masks |
|
|
|
def preprocess(self, img): |
|
""" |
|
Pre-processes the input image. |
|
|
|
Args: |
|
img (Numpy.ndarray): image about to be processed. |
|
|
|
Returns: |
|
img_process (Numpy.ndarray): image preprocessed for inference. |
|
ratio (tuple): width, height ratios in letterbox. |
|
pad_w (float): width padding in letterbox. |
|
pad_h (float): height padding in letterbox. |
|
""" |
|
|
|
# Resize and pad input image using letterbox() (Borrowed from Ultralytics) |
|
shape = img.shape[:2] # original image shape |
|
new_shape = (self.model_height, self.model_width) |
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding |
|
if shape[::-1] != new_unpad: # resize |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1)) |
|
left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1)) |
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) |
|
|
|
# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional) |
|
img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0 |
|
img_process = img[None] if len(img.shape) == 3 else img |
|
return img_process, ratio, (pad_w, pad_h) |
|
|
|
def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32): |
|
""" |
|
Post-process the prediction. |
|
|
|
Args: |
|
preds (Numpy.ndarray): predictions come from ort.session.run(). |
|
im0 (Numpy.ndarray): [h, w, c] original input image. |
|
ratio (tuple): width, height ratios in letterbox. |
|
pad_w (float): width padding in letterbox. |
|
pad_h (float): height padding in letterbox. |
|
conf_threshold (float): conf threshold. |
|
iou_threshold (float): iou threshold. |
|
nm (int): the number of masks. |
|
|
|
Returns: |
|
boxes (List): list of bounding boxes. |
|
segments (List): list of segments. |
|
masks (np.ndarray): [N, H, W], output masks. |
|
""" |
|
x, protos = preds[0], preds[1] # Two outputs: predictions and protos |
|
|
|
# Transpose the first output: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm) |
|
x = np.einsum("bcn->bnc", x) |
|
|
|
# Predictions filtering by conf-threshold |
|
x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold] |
|
|
|
# Create a new matrix which merge these(box, score, cls, nm) into one |
|
# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html |
|
x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]] |
|
|
|
# NMS filtering |
|
x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)] |
|
|
|
# Decode and return |
|
if len(x) > 0: |
|
# Bounding boxes format change: cxcywh -> xyxy |
|
x[..., [0, 1]] -= x[..., [2, 3]] / 2 |
|
x[..., [2, 3]] += x[..., [0, 1]] |
|
|
|
# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image |
|
x[..., :4] -= [pad_w, pad_h, pad_w, pad_h] |
|
x[..., :4] /= min(ratio) |
|
|
|
# Bounding boxes boundary clamp |
|
x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1]) |
|
x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0]) |
|
|
|
# Process masks |
|
masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape) |
|
|
|
# Masks -> Segments(contours) |
|
segments = self.masks2segments(masks) |
|
return x[..., :6], segments, masks # boxes, segments, masks |
|
else: |
|
return [], [], [] |
|
|
|
@staticmethod |
|
def masks2segments(masks): |
|
""" |
|
It takes a list of masks(n,h,w) and returns a list of segments(n,xy) (Borrowed from |
|
https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L750) |
|
|
|
Args: |
|
masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160). |
|
|
|
Returns: |
|
segments (List): list of segment masks. |
|
""" |
|
segments = [] |
|
for x in masks.astype("uint8"): |
|
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE |
|
if c: |
|
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) |
|
else: |
|
c = np.zeros((0, 2)) # no segments found |
|
segments.append(c.astype("float32")) |
|
return segments |
|
|
|
@staticmethod |
|
def crop_mask(masks, boxes): |
|
""" |
|
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. (Borrowed from |
|
https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L599) |
|
|
|
Args: |
|
masks (Numpy.ndarray): [n, h, w] tensor of masks. |
|
boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form. |
|
|
|
Returns: |
|
(Numpy.ndarray): The masks are being cropped to the bounding box. |
|
""" |
|
n, h, w = masks.shape |
|
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1) |
|
r = np.arange(w, dtype=x1.dtype)[None, None, :] |
|
c = np.arange(h, dtype=x1.dtype)[None, :, None] |
|
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) |
|
|
|
def process_mask(self, protos, masks_in, bboxes, im0_shape): |
|
""" |
|
Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality |
|
but is slower. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L618) |
|
|
|
Args: |
|
protos (numpy.ndarray): [mask_dim, mask_h, mask_w]. |
|
masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms. |
|
bboxes (numpy.ndarray): bboxes re-scaled to original image shape. |
|
im0_shape (tuple): the size of the input image (h,w,c). |
|
|
|
Returns: |
|
(numpy.ndarray): The upsampled masks. |
|
""" |
|
c, mh, mw = protos.shape |
|
masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN |
|
masks = np.ascontiguousarray(masks) |
|
masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape |
|
masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW |
|
masks = self.crop_mask(masks, bboxes) |
|
return np.greater(masks, 0.5) |
|
|
|
@staticmethod |
|
def scale_mask(masks, im0_shape, ratio_pad=None): |
|
""" |
|
Takes a mask, and resizes it to the original image size. (Borrowed from |
|
https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L305) |
|
|
|
Args: |
|
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3]. |
|
im0_shape (tuple): the original image shape. |
|
ratio_pad (tuple): the ratio of the padding to the original image. |
|
|
|
Returns: |
|
masks (np.ndarray): The masks that are being returned. |
|
""" |
|
im1_shape = masks.shape[:2] |
|
if ratio_pad is None: # calculate from im0_shape |
|
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new |
|
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding |
|
else: |
|
pad = ratio_pad[1] |
|
|
|
# Calculate tlbr of mask |
|
top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x |
|
bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1)) |
|
if len(masks.shape) < 2: |
|
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') |
|
masks = masks[top:bottom, left:right] |
|
masks = cv2.resize( |
|
masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR |
|
) # INTER_CUBIC would be better |
|
if len(masks.shape) == 2: |
|
masks = masks[:, :, None] |
|
return masks |
|
|
|
def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True): |
|
""" |
|
Draw and visualize results. |
|
|
|
Args: |
|
im (np.ndarray): original image, shape [h, w, c]. |
|
bboxes (numpy.ndarray): [n, 4], n is number of bboxes. |
|
segments (List): list of segment masks. |
|
vis (bool): imshow using OpenCV. |
|
save (bool): save image annotated. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
# Draw rectangles and polygons |
|
im_canvas = im.copy() |
|
for (*box, conf, cls_), segment in zip(bboxes, segments): |
|
# draw contour and fill mask |
|
cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline |
|
cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True)) |
|
|
|
# draw bbox rectangle |
|
cv2.rectangle( |
|
im, |
|
(int(box[0]), int(box[1])), |
|
(int(box[2]), int(box[3])), |
|
self.color_palette(int(cls_), bgr=True), |
|
1, |
|
cv2.LINE_AA, |
|
) |
|
cv2.putText( |
|
im, |
|
f"{self.classes[cls_]}: {conf:.3f}", |
|
(int(box[0]), int(box[1] - 9)), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.7, |
|
self.color_palette(int(cls_), bgr=True), |
|
2, |
|
cv2.LINE_AA, |
|
) |
|
|
|
# Mix image |
|
im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0) |
|
|
|
# Show image |
|
if vis: |
|
cv2.imshow("demo", im) |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|
|
# Save image |
|
if save: |
|
cv2.imwrite("demo.jpg", im) |
|
|
|
|
|
if __name__ == "__main__": |
|
# Create an argument parser to handle command-line arguments |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", type=str, required=True, help="Path to ONNX model") |
|
parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image") |
|
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold") |
|
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold") |
|
args = parser.parse_args() |
|
|
|
# Build model |
|
model = YOLOv8Seg(args.model) |
|
|
|
# Read image by OpenCV |
|
img = cv2.imread(args.source) |
|
|
|
# Inference |
|
boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou) |
|
|
|
# Draw bboxes and polygons |
|
if len(boxes) > 0: |
|
model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
|
|
|