You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
8.6 KiB
231 lines
8.6 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import argparse |
|
|
|
import cv2 |
|
import numpy as np |
|
import onnxruntime as ort |
|
import torch |
|
|
|
from ultralytics.utils import ASSETS, yaml_load |
|
from ultralytics.utils.checks import check_requirements, check_yaml |
|
|
|
|
|
class YOLOv8: |
|
"""YOLOv8 object detection model class for handling inference and visualization.""" |
|
|
|
def __init__(self, onnx_model, input_image, confidence_thres, iou_thres): |
|
""" |
|
Initializes an instance of the YOLOv8 class. |
|
|
|
Args: |
|
onnx_model: Path to the ONNX model. |
|
input_image: Path to the input image. |
|
confidence_thres: Confidence threshold for filtering detections. |
|
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. |
|
""" |
|
self.onnx_model = onnx_model |
|
self.input_image = input_image |
|
self.confidence_thres = confidence_thres |
|
self.iou_thres = iou_thres |
|
|
|
# Load the class names from the COCO dataset |
|
self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] |
|
|
|
# Generate a color palette for the classes |
|
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) |
|
|
|
def draw_detections(self, img, box, score, class_id): |
|
""" |
|
Draws bounding boxes and labels on the input image based on the detected objects. |
|
|
|
Args: |
|
img: The input image to draw detections on. |
|
box: Detected bounding box. |
|
score: Corresponding detection score. |
|
class_id: Class ID for the detected object. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
# Extract the coordinates of the bounding box |
|
x1, y1, w, h = box |
|
|
|
# Retrieve the color for the class ID |
|
color = self.color_palette[class_id] |
|
|
|
# Draw the bounding box on the image |
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) |
|
|
|
# Create the label text with class name and score |
|
label = f"{self.classes[class_id]}: {score:.2f}" |
|
|
|
# Calculate the dimensions of the label text |
|
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
|
|
# Calculate the position of the label text |
|
label_x = x1 |
|
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 |
|
|
|
# Draw a filled rectangle as the background for the label text |
|
cv2.rectangle( |
|
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED |
|
) |
|
|
|
# Draw the label text on the image |
|
cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) |
|
|
|
def preprocess(self): |
|
""" |
|
Preprocesses the input image before performing inference. |
|
|
|
Returns: |
|
image_data: Preprocessed image data ready for inference. |
|
""" |
|
# Read the input image using OpenCV |
|
self.img = cv2.imread(self.input_image) |
|
|
|
# Get the height and width of the input image |
|
self.img_height, self.img_width = self.img.shape[:2] |
|
|
|
# Convert the image color space from BGR to RGB |
|
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) |
|
|
|
# Resize the image to match the input shape |
|
img = cv2.resize(img, (self.input_width, self.input_height)) |
|
|
|
# Normalize the image data by dividing it by 255.0 |
|
image_data = np.array(img) / 255.0 |
|
|
|
# Transpose the image to have the channel dimension as the first dimension |
|
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first |
|
|
|
# Expand the dimensions of the image data to match the expected input shape |
|
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) |
|
|
|
# Return the preprocessed image data |
|
return image_data |
|
|
|
def postprocess(self, input_image, output): |
|
""" |
|
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. |
|
|
|
Args: |
|
input_image (numpy.ndarray): The input image. |
|
output (numpy.ndarray): The output of the model. |
|
|
|
Returns: |
|
numpy.ndarray: The input image with detections drawn on it. |
|
""" |
|
|
|
# Transpose and squeeze the output to match the expected shape |
|
outputs = np.transpose(np.squeeze(output[0])) |
|
|
|
# Get the number of rows in the outputs array |
|
rows = outputs.shape[0] |
|
|
|
# Lists to store the bounding boxes, scores, and class IDs of the detections |
|
boxes = [] |
|
scores = [] |
|
class_ids = [] |
|
|
|
# Calculate the scaling factors for the bounding box coordinates |
|
x_factor = self.img_width / self.input_width |
|
y_factor = self.img_height / self.input_height |
|
|
|
# Iterate over each row in the outputs array |
|
for i in range(rows): |
|
# Extract the class scores from the current row |
|
classes_scores = outputs[i][4:] |
|
|
|
# Find the maximum score among the class scores |
|
max_score = np.amax(classes_scores) |
|
|
|
# If the maximum score is above the confidence threshold |
|
if max_score >= self.confidence_thres: |
|
# Get the class ID with the highest score |
|
class_id = np.argmax(classes_scores) |
|
|
|
# Extract the bounding box coordinates from the current row |
|
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] |
|
|
|
# Calculate the scaled coordinates of the bounding box |
|
left = int((x - w / 2) * x_factor) |
|
top = int((y - h / 2) * y_factor) |
|
width = int(w * x_factor) |
|
height = int(h * y_factor) |
|
|
|
# Add the class ID, score, and box coordinates to the respective lists |
|
class_ids.append(class_id) |
|
scores.append(max_score) |
|
boxes.append([left, top, width, height]) |
|
|
|
# Apply non-maximum suppression to filter out overlapping bounding boxes |
|
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) |
|
|
|
# Iterate over the selected indices after non-maximum suppression |
|
for i in indices: |
|
# Get the box, score, and class ID corresponding to the index |
|
box = boxes[i] |
|
score = scores[i] |
|
class_id = class_ids[i] |
|
|
|
# Draw the detection on the input image |
|
self.draw_detections(input_image, box, score, class_id) |
|
|
|
# Return the modified input image |
|
return input_image |
|
|
|
def main(self): |
|
""" |
|
Performs inference using an ONNX model and returns the output image with drawn detections. |
|
|
|
Returns: |
|
output_img: The output image with drawn detections. |
|
""" |
|
# Create an inference session using the ONNX model and specify execution providers |
|
session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) |
|
|
|
# Get the model inputs |
|
model_inputs = session.get_inputs() |
|
|
|
# Store the shape of the input for later use |
|
input_shape = model_inputs[0].shape |
|
self.input_width = input_shape[2] |
|
self.input_height = input_shape[3] |
|
|
|
# Preprocess the image data |
|
img_data = self.preprocess() |
|
|
|
# Run inference using the preprocessed image data |
|
outputs = session.run(None, {model_inputs[0].name: img_data}) |
|
|
|
# Perform post-processing on the outputs to obtain output image. |
|
return self.postprocess(self.img, outputs) # output image |
|
|
|
|
|
if __name__ == "__main__": |
|
# Create an argument parser to handle command-line arguments |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.") |
|
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") |
|
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") |
|
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") |
|
args = parser.parse_args() |
|
|
|
# Check the requirements and select the appropriate backend (CPU or GPU) |
|
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") |
|
|
|
# Create an instance of the YOLOv8 class with the specified arguments |
|
detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres) |
|
|
|
# Perform object detection and obtain the output image |
|
output_image = detection.main() |
|
|
|
# Display the output image in a window |
|
cv2.namedWindow("Output", cv2.WINDOW_NORMAL) |
|
cv2.imshow("Output", output_image) |
|
|
|
# Wait for a key press to exit |
|
cv2.waitKey(0)
|
|
|