--- comments: true description: UltralyticsがサポートするYOLOファミリー、SAM、MobileSAM、FastSAM、YOLO-NAS、RT-DETRモデルの多様な範囲を探る。CLIとPythonの両方の使用例で始める。 keywords: Ultralytics, ドキュメンテーション, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, モデル, アーキテクチャ, Python, CLI --- # Ultralyticsによるサポートモデル Ultralyticsのモデルドキュメンテーションへようこそ![オブジェクト検出](../tasks/detect.md)、[インスタンスセグメンテーション](../tasks/segment.md)、[画像分類](../tasks/classify.md)、[ポーズ推定](../tasks/pose.md)、[マルチオブジェクトトラッキング](../modes/track.md)など、特定のタスクに適した幅広いモデルをサポートしています。Ultralyticsにあなたのモデルアーキテクチャを寄稿したい場合は、[コントリビューティングガイド](../../help/contributing.md)を確認してください。 !!! note 🚧 弊社の多言語ドキュメンテーションは現在建設中で、改善に向けて努力しています。ご理解いただきありがとうございます!🙏 ## 注目のモデル 以下はサポートされる主要なモデルのいくつかです: 1. **[YOLOv3](../../models/yolov3.md)**: ジョセフ・レッドモンによるYOLOモデルファミリーの第三世代で、効率的なリアルタイムオブジェクト検出能力があります。 2. **[YOLOv4](../../models/yolov4.md)**: YOLOv3へのdarknet-nativeなアップデートで、2020年にアレクセイ・ボチコフスキーが公開しました。 3. **[YOLOv5](../../models/yolov5.md)**: UltralyticsによるYOLOアーキテクチャの改良版で、以前のバージョンと比較してパフォーマンスとスピードのトレードオフが向上しています。 4. **[YOLOv6](../../models/yolov6.md)**: 2022年に[美団](https://about.meituan.com/)によってリリースされ、同社の多くの自治配送ロボットで使用されています。 5. **[YOLOv7](../../models/yolov7.md)**: YOLOv4の作者によって2022年にリリースされた更新されたYOLOモデル。 6. **[YOLOv8](../../models/yolov8.md)**: YOLOファミリーの最新バージョンで、インスタンスセグメンテーション、ポーズ/キーポイント推定、分類などの機能が強化されています。 7. **[Segment Anything Model (SAM)](../../models/sam.md)**: MetaのSegment Anything Model (SAM)です。 8. **[Mobile Segment Anything Model (MobileSAM)](../../models/mobile-sam.md)**: 慶尚大学によるモバイルアプリケーション向けのMobileSAM。 9. **[Fast Segment Anything Model (FastSAM)](../../models/fast-sam.md)**: 中国科学院自動化研究所の画像・映像分析グループによるFastSAM。 10. **[YOLO-NAS](../../models/yolo-nas.md)**: YOLO Neural Architecture Search (NAS)モデル。 11. **[Realtime Detection Transformers (RT-DETR)](../../models/rtdetr.md)**: BaiduのPaddlePaddle Realtime Detection Transformer (RT-DETR)モデル。
視聴: Ultralytics YOLOモデルを数行のコードで実行。