--- comments: true description: Learn how to profile speed and accuracy of YOLOv8 across various export formats; get insights on mAP50-95, accuracy_top5 metrics, and more. keywords: Ultralytics, YOLOv8, benchmarking, speed profiling, accuracy profiling, mAP50-95, accuracy_top5, ONNX, OpenVINO, TensorRT, YOLO export formats --- **Benchmark mode** is used to profile the speed and accuracy of various export formats for YOLOv8. The benchmarks provide information on the size of the exported format, its `mAP50-95` metrics (for object detection, segmentation and pose) or `accuracy_top5` metrics (for classification), and the inference time in milliseconds per image across various export formats like ONNX, OpenVINO, TensorRT and others. This information can help users choose the optimal export format for their specific use case based on their requirements for speed and accuracy. !!! tip "Tip" * Export to ONNX or OpenVINO for up to 3x CPU speedup. * Export to TensorRT for up to 5x GPU speedup. ## Usage Examples Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT etc. See Arguments section below for a full list of export arguments. !!! example "" === "Python" ```python from ultralytics.utils.benchmarks import benchmark # Benchmark on GPU benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0) ``` === "CLI" ```bash yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0 ``` ## Arguments Arguments such as `model`, `data`, `imgsz`, `half`, `device`, and `verbose` provide users with the flexibility to fine-tune the benchmarks to their specific needs and compare the performance of different export formats with ease. | Key | Value | Description | |-----------|---------|-----------------------------------------------------------------------| | `model` | `None` | path to model file, i.e. yolov8n.pt, yolov8n.yaml | | `data` | `None` | path to YAML referencing the benchmarking dataset (under `val` label) | | `imgsz` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) | | `half` | `False` | FP16 quantization | | `int8` | `False` | INT8 quantization | | `device` | `None` | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu | | `verbose` | `False` | do not continue on error (bool), or val floor threshold (float) | ## Export Formats Benchmarks will attempt to run automatically on all possible export formats below. | Format | `format` Argument | Model | Metadata | Arguments | |--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------| | [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - | | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` | | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` | | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half` | | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` | | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` | | [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras` | | [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` | | [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` | | [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` | | [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` | | [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` | See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.