YOLO Vision banner

[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar)
Ultralytics CI Ultralytics YOLO Citation Ultralytics Docker Pulls Ultralytics Discord Ultralytics Forums Ultralytics Reddit
Run Ultralytics on Gradient Open Ultralytics In Colab Open Ultralytics In Kaggle Open Ultralytics In Binder

[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) 是一个尖端的、最先进(SOTA)的模型,基于之前 YOLO 版本的成功,并引入了新功能和改进以进一步提升性能和灵活性。YOLO11 被设计得快速、准确且易于使用,是进行广泛对象检测和跟踪、实例分割、图像分类和姿态估计任务的理想选择。 我们希望这里的资源能帮助你充分利用 YOLO。请浏览 Ultralytics 文档 以获取详细信息,在 GitHub 上提出问题或讨论,成为 Ultralytics DiscordReddit论坛 的成员! 想申请企业许可证,请完成 [Ultralytics Licensing](https://www.ultralytics.com/license) 上的表单。 YOLO11 performance plots
Ultralytics GitHub space Ultralytics LinkedIn space Ultralytics Twitter space Ultralytics YouTube space Ultralytics TikTok space Ultralytics BiliBili space Ultralytics Discord
##
文档
请参阅下方的快速开始安装和使用示例,并查看我们的 [文档](https://docs.ultralytics.com/) 以获取有关训练、验证、预测和部署的完整文档。
安装 在 [**Python>=3.8**](https://www.python.org/) 环境中使用 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 通过 pip 安装包含所有[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) 的 ultralytics 包。 [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/) ```bash pip install ultralytics ``` 有关其他安装方法,包括 [Conda](https://anaconda.org/conda-forge/ultralytics)、[Docker](https://hub.docker.com/r/ultralytics/ultralytics) 和 Git,请参阅 [快速开始指南](https://docs.ultralytics.com/quickstart/)。 [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
使用 ### CLI YOLO 可以直接在命令行接口(CLI)中使用 `yolo` 命令: ```bash yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg' ``` `yolo` 可以用于各种任务和模式,并接受额外参数,例如 `imgsz=640`。请参阅 YOLO [CLI 文档](https://docs.ultralytics.com/usage/cli/) 以获取示例。 ### Python YOLO 也可以直接在 Python 环境中使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/): ```python from ultralytics import YOLO # 加载模型 model = YOLO("yolo11n.pt") # 训练模型 train_results = model.train( data="coco8.yaml", # 数据集 YAML 路径 epochs=100, # 训练轮次 imgsz=640, # 训练图像尺寸 device="cpu", # 运行设备,例如 device=0 或 device=0,1,2,3 或 device=cpu ) # 评估模型在验证集上的性能 metrics = model.val() # 在图像上执行对象检测 results = model("path/to/image.jpg") results[0].show() # 将模型导出为 ONNX 格式 path = model.export(format="onnx") # 返回导出模型的路径 ``` 请参阅 YOLO [Python 文档](https://docs.ultralytics.com/usage/python/) 以获取更多示例。
##
模型
YOLO11 [检测](https://docs.ultralytics.com/tasks/detect/)、[分割](https://docs.ultralytics.com/tasks/segment/) 和 [姿态](https://docs.ultralytics.com/tasks/pose/) 模型在 [COCO](https://docs.ultralytics.com/datasets/detect/coco/) 数据集上进行预训练,这些模型可在此处获得,此外还有在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上预训练的 YOLO11 [分类](https://docs.ultralytics.com/tasks/classify/) 模型。所有检测、分割和姿态模型均支持 [跟踪](https://docs.ultralytics.com/modes/track/) 模式。 Ultralytics YOLO supported tasks 所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时自动从最新的 Ultralytics [发布](https://github.com/ultralytics/assets/releases)下载。
检测 (COCO) 请参阅 [检测文档](https://docs.ultralytics.com/tasks/detect/) 以获取使用这些在 [COCO](https://docs.ultralytics.com/datasets/detect/coco/) 数据集上训练的模型的示例,其中包含 80 个预训练类别。 | 模型 | 尺寸
(像素) | mAPval
50-95 | 速度
CPU ONNX
(ms) | 速度
T4 TensorRT10
(ms) | 参数
(M) | FLOPs
(B) | | ------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- | | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 | | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 | | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 | | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 | | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 | - **mAPval** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。
复制命令 `yolo val detect data=coco.yaml device=0` - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。
复制命令 `yolo val detect data=coco.yaml batch=1 device=0|cpu`
分割 (COCO) 请参阅 [分割文档](https://docs.ultralytics.com/tasks/segment/) 以获取使用这些在 [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/) 数据集上训练的模型的示例,其中包含 80 个预训练类别。 | 模型 | 尺寸
(像素) | mAPbox
50-95 | mAPmask
50-95 | 速度
CPU ONNX
(ms) | 速度
T4 TensorRT10
(ms) | 参数
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | ------------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- | | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 | | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 | | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 | | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 | | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 | - **mAPval** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。
复制命令 `yolo val segment data=coco-seg.yaml device=0` - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。
复制命令 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
分类 (ImageNet) 请参阅 [分类文档](https://docs.ultralytics.com/tasks/classify/) 以获取使用这些在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上训练的模型的示例,其中包含 1000 个预训练类别。 | 模型 | 尺寸
(像素) | acc
top1 | acc
top5 | 速度
CPU ONNX
(ms) | 速度
T4 TensorRT10
(ms) | 参数
(M) | FLOPs
(B) at 640 | | -------------------------------------------------------------------------------------------- | ------------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | ---------------- | ------------------------ | | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 | | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 | | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 | | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 | | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 | - **acc** 值为在 [ImageNet](https://www.image-net.org/) 数据集验证集上的模型准确率。
复制命令 `yolo val classify data=path/to/ImageNet device=0` - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 ImageNet 验证图像上平均。
复制命令 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
姿态 (COCO) 请参阅 [姿态文档](https://docs.ultralytics.com/tasks/pose/) 以获取使用这些在 [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/) 数据集上训练的模型的示例,其中包含 1 个预训练类别(人)。 | 模型 | 尺寸
(像素) | mAPpose
50-95 | mAPpose
50 | 速度
CPU ONNX
(ms) | 速度
T4 TensorRT10
(ms) | 参数
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- | | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 | | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 | | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 | | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 | | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 | - **mAPval** 值针对单模型单尺度在 [COCO Keypoints val2017](https://cocodataset.org/) 数据集上进行。
复制命令 `yolo val pose data=coco-pose.yaml device=0` - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。
复制命令 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
OBB (DOTAv1) 请参阅 [OBB 文档](https://docs.ultralytics.com/tasks/obb/) 以获取使用这些在 [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/) 数据集上训练的模型的示例,其中包含 15 个预训练类别。 | 模型 | 尺寸
(像素) | mAPtest
50 | 速度
CPU ONNX
(ms) | 速度
T4 TensorRT10
(ms) | 参数
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | ------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- | | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 | 4.43 ± 0.01 | 2.7 | 17.2 | | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 | 5.13 ± 0.02 | 9.7 | 57.5 | | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 | 10.07 ± 0.38 | 20.9 | 183.5 | | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 | 13.46 ± 0.55 | 26.2 | 232.0 | | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 | 28.59 ± 0.96 | 58.8 | 520.2 | - **mAPtest** 值针对单模型多尺度在 [DOTAv1](https://captain-whu.github.io/DOTA/index.html) 数据集上进行。
复制命令 `yolo val obb data=DOTAv1.yaml device=0 split=test` 并提交合并结果到 [DOTA 评估](https://captain-whu.github.io/DOTA/evaluation.html)。 - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 DOTAv1 验证图像上平均。
复制命令 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
##
集成
我们与领先的 AI 平台的关键集成扩展了 Ultralytics 产品的功能,提升了数据集标注、训练、可视化和模型管理等任务。探索 Ultralytics 如何通过与 [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/)、[Comet](https://bit.ly/yolov8-readme-comet)、[Roboflow](https://roboflow.com/?ref=ultralytics) 和 [OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 的合作,优化您的 AI 工作流程。
Ultralytics active learning integrations

Ultralytics HUB logo space W&B logo space Comet ML logo space NeuralMagic logo
| Ultralytics HUB 🚀 | W&B | Comet ⭐ 全新 | Neural Magic | | :----------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------: | | 简化 YOLO 工作流程:通过 [Ultralytics HUB](https://www.ultralytics.com/hub) 轻松标注、训练和部署。立即试用! | 使用 [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) 跟踪实验、超参数和结果 | 永久免费,[Comet](https://bit.ly/yolov5-readme-comet) 允许您保存 YOLO11 模型、恢复训练,并交互式地可视化和调试预测结果 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 运行 YOLO11 推理,速度提升至 6 倍 | ##
Ultralytics HUB
体验无缝 AI 使用 [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐,一个集数据可视化、YOLO11 🚀 模型训练和部署于一体的解决方案,无需编写代码。利用我们最先进的平台和用户友好的 [Ultralytics 应用](https://www.ultralytics.com/app-install),将图像转换为可操作见解,并轻松实现您的 AI 愿景。免费开始您的旅程! Ultralytics HUB preview image ##
贡献
我们欢迎您的意见!没有社区的帮助,Ultralytics YOLO 就不可能实现。请参阅我们的 [贡献指南](https://docs.ultralytics.com/help/contributing/) 开始,并填写我们的 [调查问卷](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们提供您体验的反馈。感谢所有贡献者 🙏! Ultralytics open-source contributors ##
许可
Ultralytics 提供两种许可选项以适应各种用例: - **AGPL-3.0 许可**:这是一个 [OSI 批准](https://opensource.org/license) 的开源许可,适合学生和爱好者,促进开放协作和知识共享。有关详细信息,请参阅 [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件。 - **企业许可**:专为商业使用设计,此许可允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,无需满足 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品,请通过 [Ultralytics Licensing](https://www.ultralytics.com/license) 联系我们。 ##
联系
如需 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues)。成为 Ultralytics [Discord](https://discord.com/invite/ultralytics)、[Reddit](https://www.reddit.com/r/ultralytics/) 或 [论坛](https://community.ultralytics.com/) 的成员,提出问题、分享项目、探讨学习讨论,或寻求所有 Ultralytics 相关的帮助!
Ultralytics GitHub space Ultralytics LinkedIn space Ultralytics Twitter space Ultralytics YouTube space Ultralytics TikTok space Ultralytics BiliBili space Ultralytics Discord