# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib from copy import copy from pathlib import Path import cv2 import numpy as np import pytest import torch from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO from ultralytics.cfg import TASK2DATA from ultralytics.data.build import load_inference_source from ultralytics.utils import (ASSETS, DEFAULT_CFG, DEFAULT_CFG_PATH, LINUX, MACOS, ONLINE, ROOT, WEIGHTS_DIR, WINDOWS, checks, is_dir_writeable) from ultralytics.utils.downloads import download from ultralytics.utils.torch_utils import TORCH_1_9 MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ASSETS / 'bus.jpg' TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files IS_TMP_WRITEABLE = is_dir_writeable(TMP) def test_model_forward(): """Test the forward pass of the YOLO model.""" model = YOLO(CFG) model(source=None, imgsz=32, augment=True) # also test no source and augment def test_model_methods(): """Test various methods and properties of the YOLO model.""" model = YOLO(MODEL) # Model methods model.info(verbose=True, detailed=True) model = model.reset_weights() model = model.load(MODEL) model.to('cpu') model.fuse() model.clear_callback('on_train_start') model.reset_callbacks() # Model properties _ = model.names _ = model.device _ = model.transforms _ = model.task_map def test_model_profile(): """Test profiling of the YOLO model with 'profile=True' argument.""" from ultralytics.nn.tasks import DetectionModel model = DetectionModel() # build model im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 _ = model.predict(im, profile=True) @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason='directory is not writeable') def test_predict_txt(): """Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file.""" txt_file = TMP / 'sources.txt' with open(txt_file, 'w') as f: for x in [ASSETS / 'bus.jpg', ASSETS, ASSETS / '*', ASSETS / '**/*.jpg']: f.write(f'{x}\n') _ = YOLO(MODEL)(source=txt_file, imgsz=32) def test_predict_img(): """Test YOLO prediction on various types of image sources.""" model = YOLO(MODEL) seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') im = cv2.imread(str(SOURCE)) assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch # Test tensor inference im = cv2.imread(str(SOURCE)) # OpenCV t = cv2.resize(im, (32, 32)) t = ToTensor()(t) t = torch.stack([t, t, t, t]) results = model(t, imgsz=32) assert len(results) == t.shape[0] results = seg_model(t, imgsz=32) assert len(results) == t.shape[0] results = cls_model(t, imgsz=32) assert len(results) == t.shape[0] results = pose_model(t, imgsz=32) assert len(results) == t.shape[0] def test_predict_grey_and_4ch(): """Test YOLO prediction on SOURCE converted to greyscale and 4-channel images.""" im = Image.open(SOURCE) directory = TMP / 'im4' directory.mkdir(parents=True, exist_ok=True) source_greyscale = directory / 'greyscale.jpg' source_rgba = directory / '4ch.png' source_non_utf = directory / 'non_UTF_测试文件_tést_image.jpg' source_spaces = directory / 'image with spaces.jpg' im.convert('L').save(source_greyscale) # greyscale im.convert('RGBA').save(source_rgba) # 4-ch PNG with alpha im.save(source_non_utf) # non-UTF characters in filename im.save(source_spaces) # spaces in filename # Inference model = YOLO(MODEL) for f in source_rgba, source_greyscale, source_non_utf, source_spaces: for source in Image.open(f), cv2.imread(str(f)), f: results = model(source, save=True, verbose=True, imgsz=32) assert len(results) == 1 # verify that an image was run f.unlink() # cleanup @pytest.mark.skipif(not ONLINE, reason='environment is offline') @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason='directory is not writeable') def test_track_stream(): """ Test YouTube streaming tracking (short 10 frame video) with non-default ByteTrack tracker. Note imgsz=160 required for tracking for higher confidence and better matches """ import yaml model = YOLO(MODEL) model.predict('https://youtu.be/G17sBkb38XQ', imgsz=96, save=True) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='bytetrack.yaml') model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='botsort.yaml') # Test Global Motion Compensation (GMC) methods for gmc in 'orb', 'sift', 'ecc': with open(ROOT / 'cfg/trackers/botsort.yaml', encoding='utf-8') as f: data = yaml.safe_load(f) tracker = TMP / f'botsort-{gmc}.yaml' data['gmc_method'] = gmc with open(tracker, 'w', encoding='utf-8') as f: yaml.safe_dump(data, f) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker=tracker) def test_val(): """Test the validation mode of the YOLO model.""" YOLO(MODEL).val(data='coco8.yaml', imgsz=32, save_hybrid=True) def test_train_scratch(): """Test training the YOLO model from scratch.""" model = YOLO(CFG) model.train(data='coco8.yaml', epochs=2, imgsz=32, cache='disk', batch=-1, close_mosaic=1, name='model') model(SOURCE) def test_train_pretrained(): """Test training the YOLO model from a pre-trained state.""" model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') model.train(data='coco8-seg.yaml', epochs=1, imgsz=32, cache='ram', copy_paste=0.5, mixup=0.5, name=0) model(SOURCE) def test_export_torchscript(): """Test exporting the YOLO model to TorchScript format.""" f = YOLO(MODEL).export(format='torchscript', optimize=False) YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): """Test exporting the YOLO model to ONNX format.""" f = YOLO(MODEL).export(format='onnx', dynamic=True) YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): """Test exporting the YOLO model to OpenVINO format.""" f = YOLO(MODEL).export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): """Test exporting the YOLO model to CoreML format.""" if not WINDOWS: # RuntimeError: BlobWriter not loaded with coremltools 7.0 on windows if MACOS: f = YOLO(MODEL).export(format='coreml') YOLO(f)(SOURCE) # model prediction only supported on macOS for nms=False models else: YOLO(MODEL).export(format='coreml', nms=True) def test_export_tflite(enabled=False): """ Test exporting the YOLO model to TFLite format. Note TF suffers from install conflicts on Windows and macOS. """ if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='tflite') YOLO(f)(SOURCE) def test_export_pb(enabled=False): """ Test exporting the YOLO model to *.pb format. Note TF suffers from install conflicts on Windows and macOS. """ if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='pb') YOLO(f)(SOURCE) def test_export_paddle(enabled=False): """ Test exporting the YOLO model to Paddle format. Note Paddle protobuf requirements conflicting with onnx protobuf requirements. """ if enabled: YOLO(MODEL).export(format='paddle') @pytest.mark.slow def test_export_ncnn(): """Test exporting the YOLO model to NCNN format.""" f = YOLO(MODEL).export(format='ncnn') YOLO(f)(SOURCE) # exported model inference def test_all_model_yamls(): """Test YOLO model creation for all available YAML configurations.""" for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): if 'rtdetr' in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' _ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 else: YOLO(m.name) def test_workflow(): """Test the complete workflow including training, validation, prediction, and exporting.""" model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32, optimizer='SGD') model.val(imgsz=32) model.predict(SOURCE, imgsz=32) model.export(format='onnx') # export a model to ONNX format def test_predict_callback_and_setup(): """Test callback functionality during YOLO prediction.""" def on_predict_batch_end(predictor): """Callback function that handles operations at the end of a prediction batch.""" path, im0s, _, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size] model = YOLO(MODEL) model.add_callback('on_predict_batch_end', on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True, imgsz=160) # source already setup for r, im0, bs in results: print('test_callback', im0.shape) print('test_callback', bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) def test_results(): """Test various result formats for the YOLO model.""" for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': results = YOLO(WEIGHTS_DIR / m)([SOURCE, SOURCE], imgsz=160) for r in results: r = r.cpu().numpy() r = r.to(device='cpu', dtype=torch.float32) r.save_txt(txt_file=TMP / 'runs/tests/label.txt', save_conf=True) r.save_crop(save_dir=TMP / 'runs/tests/crops/') r.tojson(normalize=True) r.plot(pil=True) r.plot(conf=True, boxes=True) print(r, len(r), r.path) @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_utils(): """Test utility functions in ultralytics/data/utils.py.""" from ultralytics.data.utils import HUBDatasetStats, autosplit from ultralytics.utils.downloads import zip_directory # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): for task in 'detect', 'segment', 'pose', 'classify': file = Path(TASK2DATA[task]).with_suffix('.zip') # i.e. coco8.zip download(f'https://github.com/ultralytics/hub/raw/main/example_datasets/{file}', unzip=False, dir=TMP) stats = HUBDatasetStats(TMP / file, task=task) stats.get_json(save=True) stats.process_images() autosplit(TMP / 'coco8') zip_directory(TMP / 'coco8/images/val') # zip @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_converter(): """Test dataset converters.""" from ultralytics.data.converter import coco80_to_coco91_class, convert_coco file = 'instances_val2017.json' download(f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}', dir=TMP) convert_coco(labels_dir=TMP, save_dir=TMP / 'yolo_labels', use_segments=True, use_keypoints=False, cls91to80=True) coco80_to_coco91_class() def test_data_annotator(): """Test automatic data annotation.""" from ultralytics.data.annotator import auto_annotate auto_annotate(ASSETS, det_model=WEIGHTS_DIR / 'yolov8n.pt', sam_model=WEIGHTS_DIR / 'mobile_sam.pt', output_dir=TMP / 'auto_annotate_labels') def test_events(): """Test event sending functionality.""" from ultralytics.hub.utils import Events events = Events() events.enabled = True cfg = copy(DEFAULT_CFG) # does not require deepcopy cfg.mode = 'test' events(cfg) def test_cfg_init(): """Test configuration initialization utilities.""" from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value with contextlib.suppress(SyntaxError): check_dict_alignment({'a': 1}, {'b': 2}) copy_default_cfg() (Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')).unlink(missing_ok=False) [smart_value(x) for x in ['none', 'true', 'false']] def test_utils_init(): """Test initialization utilities.""" from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_actions_ci get_ubuntu_version() is_github_actions_ci() get_git_origin_url() get_git_branch() def test_utils_checks(): """Test various utility checks.""" checks.check_yolov5u_filename('yolov5n.pt') checks.git_describe(ROOT) checks.check_requirements() # check requirements.txt checks.check_imgsz([600, 600], max_dim=1) checks.check_imshow() checks.check_version('ultralytics', '8.0.0') checks.print_args() # checks.check_imshow(warn=True) def test_utils_benchmarks(): """Test model benchmarking.""" from ultralytics.utils.benchmarks import ProfileModels ProfileModels(['yolov8n.yaml'], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() def test_utils_torchutils(): """Test Torch utility functions.""" from ultralytics.nn.modules.conv import Conv from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync x = torch.randn(1, 64, 20, 20) m = Conv(64, 64, k=1, s=2) profile(x, [m], n=3) get_flops_with_torch_profiler(m) time_sync() @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_utils_downloads(): """Test file download utilities.""" from ultralytics.utils.downloads import get_google_drive_file_info get_google_drive_file_info('https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link') def test_utils_ops(): """Test various operations utilities.""" from ultralytics.utils.ops import (ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr) make_divisible(17, torch.tensor([8])) boxes = torch.rand(10, 4) # xywh torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) boxes = torch.rand(10, 5) # xywhr for OBB boxes[:, 4] = torch.randn(10) * 30 torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) def test_utils_files(): """Test file handling utilities.""" from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path file_age(SOURCE) file_date(SOURCE) get_latest_run(ROOT / 'runs') path = TMP / 'path/with spaces' path.mkdir(parents=True, exist_ok=True) with spaces_in_path(path) as new_path: print(new_path) def test_nn_modules_conv(): """Test Convolutional Neural Network modules.""" from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests DWConvTranspose2d(c1, c2)(x) ConvTranspose(c1, c2)(x) Focus(c1, c2)(x) CBAM(c1)(x) # Fuse ops m = Conv2(c1, c2) m.fuse_convs() m(x) def test_nn_modules_block(): """Test Neural Network block modules.""" from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests C1(c1, c2)(x) C3x(c1, c2)(x) C3TR(c1, c2)(x) C3Ghost(c1, c2)(x) BottleneckCSP(c1, c2)(x) @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_hub(): """Test Ultralytics HUB functionalities.""" from ultralytics.hub import export_fmts_hub, logout from ultralytics.hub.utils import smart_request export_fmts_hub() logout() smart_request('GET', 'http://github.com', progress=True) @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_model_tune(): """Tune YOLO model for performance.""" YOLO('yolov8n-pose.pt').tune(data='coco8-pose.yaml', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') YOLO('yolov8n-cls.pt').tune(data='imagenet10', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu')