#include #include #include "inference.h" #include #include #include void Detector(YOLO_V8*& p) { std::filesystem::path current_path = std::filesystem::current_path(); std::filesystem::path imgs_path = current_path / "images"; for (auto& i : std::filesystem::directory_iterator(imgs_path)) { if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") { std::string img_path = i.path().string(); cv::Mat img = cv::imread(img_path); std::vector res; p->RunSession(img, res); for (auto& re : res) { cv::RNG rng(cv::getTickCount()); cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)); cv::rectangle(img, re.box, color, 3); float confidence = floor(100 * re.confidence) / 100; std::cout << std::fixed << std::setprecision(2); std::string label = p->classes[re.classId] + " " + std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4); cv::rectangle( img, cv::Point(re.box.x, re.box.y - 25), cv::Point(re.box.x + label.length() * 15, re.box.y), color, cv::FILLED ); cv::putText( img, label, cv::Point(re.box.x, re.box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0), 2 ); } std::cout << "Press any key to exit" << std::endl; cv::imshow("Result of Detection", img); cv::waitKey(0); cv::destroyAllWindows(); } } } void Classifier(YOLO_V8*& p) { std::filesystem::path current_path = std::filesystem::current_path(); std::filesystem::path imgs_path = current_path;// / "images" std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dis(0, 255); for (auto& i : std::filesystem::directory_iterator(imgs_path)) { if (i.path().extension() == ".jpg" || i.path().extension() == ".png") { std::string img_path = i.path().string(); //std::cout << img_path << std::endl; cv::Mat img = cv::imread(img_path); std::vector res; char* ret = p->RunSession(img, res); float positionY = 50; for (int i = 0; i < res.size(); i++) { int r = dis(gen); int g = dis(gen); int b = dis(gen); cv::putText(img, std::to_string(i) + ":", cv::Point(10, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2); cv::putText(img, std::to_string(res.at(i).confidence), cv::Point(70, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2); positionY += 50; } cv::imshow("TEST_CLS", img); cv::waitKey(0); cv::destroyAllWindows(); //cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img); } } } int ReadCocoYaml(YOLO_V8*& p) { // Open the YAML file std::ifstream file("coco.yaml"); if (!file.is_open()) { std::cerr << "Failed to open file" << std::endl; return 1; } // Read the file line by line std::string line; std::vector lines; while (std::getline(file, line)) { lines.push_back(line); } // Find the start and end of the names section std::size_t start = 0; std::size_t end = 0; for (std::size_t i = 0; i < lines.size(); i++) { if (lines[i].find("names:") != std::string::npos) { start = i + 1; } else if (start > 0 && lines[i].find(':') == std::string::npos) { end = i; break; } } // Extract the names std::vector names; for (std::size_t i = start; i < end; i++) { std::stringstream ss(lines[i]); std::string name; std::getline(ss, name, ':'); // Extract the number before the delimiter std::getline(ss, name); // Extract the string after the delimiter names.push_back(name); } p->classes = names; return 0; } void DetectTest() { YOLO_V8* yoloDetector = new YOLO_V8; ReadCocoYaml(yoloDetector); DL_INIT_PARAM params; params.rectConfidenceThreshold = 0.1; params.iouThreshold = 0.5; params.modelPath = "yolov8n.onnx"; params.imgSize = { 640, 640 }; #ifdef USE_CUDA params.cudaEnable = true; // GPU FP32 inference params.modelType = YOLO_DETECT_V8; // GPU FP16 inference //Note: change fp16 onnx model //params.modelType = YOLO_DETECT_V8_HALF; #else // CPU inference params.modelType = YOLO_DETECT_V8; params.cudaEnable = false; #endif yoloDetector->CreateSession(params); Detector(yoloDetector); } void ClsTest() { YOLO_V8* yoloDetector = new YOLO_V8; std::string model_path = "cls.onnx"; ReadCocoYaml(yoloDetector); DL_INIT_PARAM params{ model_path, YOLO_CLS, {224, 224} }; yoloDetector->CreateSession(params); Classifier(yoloDetector); } int main() { //DetectTest(); ClsTest(); }