--- comments: true description: Explore the YOLOv8 command line interface (CLI) for easy execution of detection tasks without needing a Python environment. keywords: YOLOv8 CLI, command line interface, YOLOv8 commands, detection tasks, Ultralytics, model training, model prediction --- # Command Line Interface Usage The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command.



Watch: Mastering Ultralytics YOLOv8: CLI

!!! Example === "Syntax" Ultralytics `yolo` commands use the following syntax: ```bash yolo TASK MODE ARGS Where TASK (optional) is one of [detect, segment, classify, pose, obb] MODE (required) is one of [train, val, predict, export, track, benchmark] ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. ``` See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg` === "Train" Train a detection model for 10 epochs with an initial learning_rate of 0.01 ```bash yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` === "Predict" Predict a YouTube video using a pretrained segmentation model at image size 320: ```bash yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 ``` === "Val" Val a pretrained detection model at batch-size 1 and image size 640: ```bash yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 ``` === "Export" Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) ```bash yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 ``` === "Special" Run special commands to see version, view settings, run checks and more: ```bash yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg ``` Where: - `TASK` (optional) is one of `[detect, segment, classify, pose, obb]`. If it is not passed explicitly YOLOv8 will try to guess the `TASK` from the model type. - `MODE` (required) is one of `[train, val, predict, export, track, benchmark]` - `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` !!! Warning "Warning" Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments. - `yolo predict model=yolov8n.pt imgsz=640 conf=0.25`   ✅ - `yolo predict model yolov8n.pt imgsz 640 conf 0.25`   ❌ - `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25`   ❌ ## Train Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page. !!! Example "Example" === "Train" Start training YOLOv8n on COCO8 for 100 epochs at image-size 640. ```bash yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640 ``` === "Resume" Resume an interrupted training. ```bash yolo detect train resume model=last.pt ``` ## Val Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need to passed as the `model` retains its training `data` and arguments as model attributes. !!! Example "Example" === "Official" Validate an official YOLOv8n model. ```bash yolo detect val model=yolov8n.pt ``` === "Custom" Validate a custom-trained model. ```bash yolo detect val model=path/to/best.pt ``` ## Predict Use a trained YOLOv8n model to run predictions on images. !!! Example "Example" === "Official" Predict with an official YOLOv8n model. ```bash yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' ``` === "Custom" Predict with a custom model. ```bash yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' ``` ## Export Export a YOLOv8n model to a different format like ONNX, CoreML, etc. !!! Example "Example" === "Official" Export an official YOLOv8n model to ONNX format. ```bash yolo export model=yolov8n.pt format=onnx ``` === "Custom" Export a custom-trained model to ONNX format. ```bash yolo export model=path/to/best.pt format=onnx ``` Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. {% include "macros/export-table.md" %} See full `export` details in the [Export](../modes/export.md) page. ## Overriding default arguments Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs. !!! Tip "" === "Train" Train a detection model for `10 epochs` with `learning_rate` of `0.01` ```bash yolo detect train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` === "Predict" Predict a YouTube video using a pretrained segmentation model at image size 320: ```bash yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 ``` === "Val" Validate a pretrained detection model at batch-size 1 and image size 640: ```bash yolo detect val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 ``` ## Overriding default config file You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, i.e. `cfg=custom.yaml`. To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command. This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example: !!! Example === "CLI" ```bash yolo copy-cfg yolo cfg=default_copy.yaml imgsz=320 ``` ## FAQ ### How do I use the Ultralytics YOLOv8 command line interface (CLI) for model training? To train a YOLOv8 model using the CLI, you can execute a simple one-line command in the terminal. For example, to train a detection model for 10 epochs with a learning rate of 0.01, you would run: ```bash yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` This command uses the `train` mode with specific arguments. Refer to the full list of available arguments in the [Configuration Guide](cfg.md). ### What tasks can I perform with the Ultralytics YOLOv8 CLI? The Ultralytics YOLOv8 CLI supports a variety of tasks including detection, segmentation, classification, validation, prediction, export, and tracking. For instance: - **Train a Model**: Run `yolo train data= model= epochs=`. - **Run Predictions**: Use `yolo predict model= source= imgsz=`. - **Export a Model**: Execute `yolo export model= format=`. Each task can be customized with various arguments. For detailed syntax and examples, see the respective sections like [Train](#train), [Predict](#predict), and [Export](#export). ### How can I validate the accuracy of a trained YOLOv8 model using the CLI? To validate a YOLOv8 model's accuracy, use the `val` mode. For example, to validate a pretrained detection model with a batch size of 1 and image size of 640, run: ```bash yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 ``` This command evaluates the model on the specified dataset and provides performance metrics. For more details, refer to the [Val](#val) section. ### What formats can I export my YOLOv8 models to using the CLI? YOLOv8 models can be exported to various formats such as ONNX, CoreML, TensorRT, and more. For instance, to export a model to ONNX format, run: ```bash yolo export model=yolov8n.pt format=onnx ``` For complete details, visit the [Export](../modes/export.md) page. ### How do I customize YOLOv8 CLI commands to override default arguments? To override default arguments in YOLOv8 CLI commands, pass them as `arg=value` pairs. For example, to train a model with custom arguments, use: ```bash yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` For a full list of available arguments and their descriptions, refer to the [Configuration Guide](cfg.md). Ensure arguments are formatted correctly, as shown in the [Overriding default arguments](#overriding-default-arguments) section.