# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Supports JetPack4.x for YOLOv8 on Jetson Nano, TX2, Xavier NX, AGX Xavier # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime # Set environment variables ENV APP_HOME /usr/src/ultralytics # Downloads to user config dir ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ /root/.config/Ultralytics/ # Add NVIDIA repositories for TensorRT dependencies RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \ echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \ echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list # Install dependencies RUN apt update && \ apt install --no-install-recommends -y git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc # Create symbolic links for python3.8 and pip3 RUN ln -sf /usr/bin/python3.8 /usr/bin/python3 RUN ln -s /usr/bin/pip3 /usr/bin/pip # Create working directory WORKDIR $APP_HOME # Copy contents and assign permissions COPY . $APP_HOME RUN chown -R root:root $APP_HOME ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt $APP_HOME # Download onnxruntime-gpu, TensorRT, PyTorch and Torchvision # Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048 ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl ADD https://github.com/ultralytics/yolov5/releases/download/v1.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \ torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl ADD https://github.com/ultralytics/yolov5/releases/download/v1.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl \ torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl # Install pip packages RUN python3 -m pip install --upgrade pip wheel RUN pip install onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \ torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl RUN pip install --no-cache-dir -e ".[export]" # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t # Run # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t # Pull and Run # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t # Pull and Run with NVIDIA runtime # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t