# Ultralytics YOLO 🚀, GPL-3.0 license from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from ultralytics import YOLO from ultralytics.yolo.data.build import load_inference_source from ultralytics.yolo.utils import ROOT, SETTINGS MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt' CFG = 'yolov8n.yaml' SOURCE = ROOT / 'assets/bus.jpg' def test_model_forward(): model = YOLO(CFG) model(SOURCE) def test_model_info(): model = YOLO(CFG) model.info() model = YOLO(MODEL) model.info(verbose=True) def test_model_fuse(): model = YOLO(CFG) model.fuse() model = YOLO(MODEL) model.fuse() def test_predict_dir(): model = YOLO(MODEL) model(source=ROOT / "assets") def test_predict_img(): model = YOLO(MODEL) img = Image.open(str(SOURCE)) output = model(source=img, save=True, verbose=True) # PIL assert len(output) == 1, "predict test failed" img = cv2.imread(str(SOURCE)) output = model(source=img, save=True, save_txt=True) # ndarray assert len(output) == 1, "predict test failed" output = model(source=[img, img], save=True, save_txt=True) # batch assert len(output) == 2, "predict test failed" output = model(source=[img, img], save=True, stream=True) # stream assert len(list(output)) == 2, "predict test failed" tens = torch.zeros(320, 640, 3) output = model(tens.numpy()) assert len(output) == 1, "predict test failed" # test multiple source imgs = [ SOURCE, # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg', # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy output = model(imgs) assert len(output) == 6, "predict test failed!" def test_val(): model = YOLO(MODEL) model.val(data="coco8.yaml", imgsz=32) def test_train_scratch(): model = YOLO(CFG) model.train(data="coco8.yaml", epochs=1, imgsz=32) model(SOURCE) def test_train_pretrained(): model = YOLO(MODEL) model.train(data="coco8.yaml", epochs=1, imgsz=32) model(SOURCE) def test_export_torchscript(): """ Format Argument Suffix CPU GPU 0 PyTorch - .pt True True 1 TorchScript torchscript .torchscript True True 2 ONNX onnx .onnx True True 3 OpenVINO openvino _openvino_model True False 4 TensorRT engine .engine False True 5 CoreML coreml .mlmodel True False 6 TensorFlow SavedModel saved_model _saved_model True True 7 TensorFlow GraphDef pb .pb True True 8 TensorFlow Lite tflite .tflite True False 9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False 10 TensorFlow.js tfjs _web_model False False 11 PaddlePaddle paddle _paddle_model True True """ from ultralytics.yolo.engine.exporter import export_formats print(export_formats()) model = YOLO(MODEL) f = model.export(format='torchscript') YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): model = YOLO(MODEL) f = model.export(format='onnx') YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): model = YOLO(MODEL) f = model.export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): model = YOLO(MODEL) model.export(format='coreml') # YOLO(f)(SOURCE) # model prediction only supported on macOS def test_export_paddle(enabled=False): # Paddle protobuf requirements conflicting with onnx protobuf requirements if enabled: model = YOLO(MODEL) model.export(format='paddle') def test_all_model_yamls(): for m in list((ROOT / 'models').rglob('*.yaml')): YOLO(m.name) def test_workflow(): model = YOLO(MODEL) model.train(data="coco8.yaml", epochs=1, imgsz=32) model.val() print(model.metrics) model.predict(SOURCE) model.export(format="onnx", opset=12) # export a model to ONNX format def test_predict_callback_and_setup(): def on_predict_batch_end(predictor): # results -> List[batch_size] path, _, im0s, _, _ = predictor.batch # print('on_predict_batch_end', im0s[0].shape) bs = [predictor.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) model = YOLO("yolov8n.pt") model.add_callback("on_predict_batch_end", on_predict_batch_end) dataset = load_inference_source(source=SOURCE, transforms=model.transforms) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True) # source already setup for _, (result, im0, bs) in enumerate(results): print('test_callback', im0.shape) print('test_callback', bs) boxes = result.boxes # Boxes object for bbox outputs print(boxes)