# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse from pathlib import Path import cv2 from sahi import AutoDetectionModel from sahi.predict import get_sliced_prediction from sahi.utils.yolov8 import download_yolov8s_model from ultralytics.utils.files import increment_path def run(weights="yolov8n.pt", source="test.mp4", view_img=False, save_img=False, exist_ok=False): """ Run object detection on a video using YOLOv8 and SAHI. Args: weights (str): Model weights path. source (str): Video file path. view_img (bool): Show results. save_img (bool): Save results. exist_ok (bool): Overwrite existing files. """ # Check source path if not Path(source).exists(): raise FileNotFoundError(f"Source path '{source}' does not exist.") yolov8_model_path = f"models/{weights}" download_yolov8s_model(yolov8_model_path) detection_model = AutoDetectionModel.from_pretrained( model_type="yolov8", model_path=yolov8_model_path, confidence_threshold=0.3, device="cpu" ) # Video setup videocapture = cv2.VideoCapture(source) frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4)) fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*"mp4v") # Output setup save_dir = increment_path(Path("ultralytics_results_with_sahi") / "exp", exist_ok) save_dir.mkdir(parents=True, exist_ok=True) video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.mp4"), fourcc, fps, (frame_width, frame_height)) while videocapture.isOpened(): success, frame = videocapture.read() if not success: break results = get_sliced_prediction( frame, detection_model, slice_height=512, slice_width=512, overlap_height_ratio=0.2, overlap_width_ratio=0.2 ) object_prediction_list = results.object_prediction_list boxes_list = [] clss_list = [] for ind, _ in enumerate(object_prediction_list): boxes = ( object_prediction_list[ind].bbox.minx, object_prediction_list[ind].bbox.miny, object_prediction_list[ind].bbox.maxx, object_prediction_list[ind].bbox.maxy, ) clss = object_prediction_list[ind].category.name boxes_list.append(boxes) clss_list.append(clss) for box, cls in zip(boxes_list, clss_list): x1, y1, x2, y2 = box cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (56, 56, 255), 2) label = str(cls) t_size = cv2.getTextSize(label, 0, fontScale=0.6, thickness=1)[0] cv2.rectangle( frame, (int(x1), int(y1) - t_size[1] - 3), (int(x1) + t_size[0], int(y1) + 3), (56, 56, 255), -1 ) cv2.putText( frame, label, (int(x1), int(y1) - 2), 0, 0.6, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA ) if view_img: cv2.imshow(Path(source).stem, frame) if save_img: video_writer.write(frame) if cv2.waitKey(1) & 0xFF == ord("q"): break video_writer.release() videocapture.release() cv2.destroyAllWindows() def parse_opt(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path") parser.add_argument("--source", type=str, required=True, help="video file path") parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument("--save-img", action="store_true", help="save results") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") return parser.parse_args() def main(opt): """Main function.""" run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)