--- comments: true description: Learn how to use Ultralytics YOLOv8 for real-time object blurring to enhance privacy and focus in your images and videos. keywords: YOLOv8, object blurring, real-time processing, privacy protection, image manipulation, video editing, Ultralytics --- # Object Blurring using Ultralytics YOLOv8 🚀 ## What is Object Blurring? Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLOv8 model capabilities to identify and manipulate objects within a given scene.



Watch: Object Blurring using Ultralytics YOLOv8

## Advantages of Object Blurring? - **Privacy Protection**: Object blurring is an effective tool for safeguarding privacy by concealing sensitive or personally identifiable information in images or videos. - **Selective Focus**: YOLOv8 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information. - **Real-time Processing**: YOLOv8's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments. !!! Example "Object Blurring using YOLOv8 Example" === "Object Blurring" ```python import cv2 from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors model = YOLO("yolov8n.pt") names = model.names cap = cv2.VideoCapture("path/to/video/file.mp4") assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) # Blur ratio blur_ratio = 50 # Video writer video_writer = cv2.VideoWriter("object_blurring_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) while cap.isOpened(): success, im0 = cap.read() if not success: print("Video frame is empty or video processing has been successfully completed.") break results = model.predict(im0, show=False) boxes = results[0].boxes.xyxy.cpu().tolist() clss = results[0].boxes.cls.cpu().tolist() annotator = Annotator(im0, line_width=2, example=names) if boxes is not None: for box, cls in zip(boxes, clss): annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)]) obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio)) im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = blur_obj cv2.imshow("ultralytics", im0) video_writer.write(im0) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() video_writer.release() cv2.destroyAllWindows() ``` ### Arguments `model.predict` | Name | Type | Default | Description | | --------------- | -------------- | ---------------------- | -------------------------------------------------------------------------- | | `source` | `str` | `'ultralytics/assets'` | source directory for images or videos | | `conf` | `float` | `0.25` | object confidence threshold for detection | | `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS | | `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) | | `half` | `bool` | `False` | use half precision (FP16) | | `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu | | `max_det` | `int` | `300` | maximum number of detections per image | | `vid_stride` | `bool` | `False` | video frame-rate stride | | `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) | | `visualize` | `bool` | `False` | visualize model features | | `augment` | `bool` | `False` | apply image augmentation to prediction sources | | `agnostic_nms` | `bool` | `False` | class-agnostic NMS | | `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | | `retina_masks` | `bool` | `False` | use high-resolution segmentation masks | | `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers | ## FAQ ### What is object blurring with Ultralytics YOLOv8? Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves automatically detecting and applying a blurring effect to specific objects in images or videos. This technique enhances privacy by concealing sensitive information while retaining relevant visual data. YOLOv8's real-time processing capabilities make it suitable for applications requiring immediate privacy protection and selective focus adjustments. ### How can I implement real-time object blurring using YOLOv8? To implement real-time object blurring with YOLOv8, follow the provided Python example. This involves using YOLOv8 for object detection and OpenCV for applying the blur effect. Here's a simplified version: ```python import cv2 from ultralytics import YOLO model = YOLO("yolov8n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") while cap.isOpened(): success, im0 = cap.read() if not success: break results = model.predict(im0, show=False) for box in results[0].boxes.xyxy.cpu().tolist(): obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = cv2.blur(obj, (50, 50)) cv2.imshow("YOLOv8 Blurring", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() ``` ### What are the benefits of using Ultralytics YOLOv8 for object blurring? Ultralytics YOLOv8 offers several advantages for object blurring: - **Privacy Protection**: Effectively obscure sensitive or identifiable information. - **Selective Focus**: Target specific objects for blurring, maintaining essential visual content. - **Real-time Processing**: Execute object blurring efficiently in dynamic environments, suitable for instant privacy enhancements. For more detailed applications, check the [advantages of object blurring section](#advantages-of-object-blurring). ### Can I use Ultralytics YOLOv8 to blur faces in a video for privacy reasons? Yes, Ultralytics YOLOv8 can be configured to detect and blur faces in videos to protect privacy. By training or using a pre-trained model to specifically recognize faces, the detection results can be processed with OpenCV to apply a blur effect. Refer to our guide on [object detection with YOLOv8](https://docs.ultralytics.com/models/yolov8) and modify the code to target face detection. ### How does YOLOv8 compare to other object detection models like Faster R-CNN for object blurring? Ultralytics YOLOv8 typically outperforms models like Faster R-CNN in terms of speed, making it more suitable for real-time applications. While both models offer accurate detection, YOLOv8's architecture is optimized for rapid inference, which is critical for tasks like real-time object blurring. Learn more about the technical differences and performance metrics in our [YOLOv8 documentation](https://docs.ultralytics.com/models/yolov8).