---
comments: true
description: Documentação oficial do YOLOv8 por Ultralytics. Aprenda como treinar, validar, predizer e exportar modelos em vários formatos. Incluindo estatísticas detalhadas de desempenho.
keywords: YOLOv8, Ultralytics, detecção de objetos, modelos pré-treinados, treinamento, validação, predição, exportação de modelos, COCO, ImageNet, PyTorch, ONNX, CoreML
---
# Detecção de Objetos
Detecção de objetos é uma tarefa que envolve identificar a localização e a classe de objetos em uma imagem ou fluxo de vídeo.
A saída de um detector de objetos é um conjunto de caixas delimitadoras que cercam os objetos na imagem, junto com rótulos de classe e pontuações de confiança para cada caixa. A detecção de objetos é uma boa escolha quando você precisa identificar objetos de interesse em uma cena, mas não precisa saber exatamente onde o objeto está ou seu formato exato.
Assista: Detecção de Objetos com Modelo Pre-treinado Ultralytics YOLOv8.
!!! Tip "Dica"
Os modelos YOLOv8 Detect são os modelos padrão do YOLOv8, ou seja, `yolov8n.pt` e são pré-treinados no [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
## [Modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
Os modelos pré-treinados YOLOv8 Detect são mostrados aqui. Os modelos Detect, Segment e Pose são pré-treinados no dataset [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), enquanto os modelos Classify são pré-treinados no dataset [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
Os [Modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) são baixados automaticamente a partir do último lançamento da Ultralytics [release](https://github.com/ultralytics/assets/releases) no primeiro uso.
| Modelo | Tamanho (pixels) | mAPval 50-95 | Velocidade CPU ONNX (ms) | Velocidade A100 TensorRT (ms) | Parâmetros (M) | FLOPs (B) |
|--------------------------------------------------------------------------------------|--------------------------|----------------------|-------------------------------------|------------------------------------------|------------------------|-------------------|
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- Os valores de **mAPval** são para um único modelo e uma única escala no dataset [COCO val2017](http://cocodataset.org).
Reproduza usando `yolo val detect data=coco.yaml device=0`
- A **Velocidade** é média tirada sobre as imagens do COCO val num [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instância.
Reproduza usando `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
## Treinar
Treine o YOLOv8n no dataset COCO128 por 100 épocas com tamanho de imagem 640. Para uma lista completa de argumentos disponíveis, veja a página [Configuração](/../usage/cfg.md).
!!! Example "Exemplo"
=== "Python"
```python
from ultralytics import YOLO
# Carregar um modelo
model = YOLO('yolov8n.yaml') # construir um novo modelo pelo YAML
model = YOLO('yolov8n.pt') # carregar um modelo pré-treinado (recomendado para treinamento)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # construir pelo YAML e transferir pesos
# Treinar o modelo
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Construir um novo modelo pelo YAML e começar o treinamento do zero
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
# Começar o treinamento a partir de um modelo pré-treinado *.pt
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
# Construir um novo modelo pelo YAML, transferir pesos pré-treinados e começar o treinamento
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
```
### Formato do Dataset
O formato do dataset de detecção do YOLO pode ser encontrado em detalhes no [Guia de Datasets](../../../datasets/detect/index.md). Para converter seu dataset existente de outros formatos (como COCO, etc.) para o formato YOLO, por favor utilize a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics.
## Validar
Valide a precisão do modelo YOLOv8n treinado no dataset COCO128. Não é necessário passar nenhum argumento, pois o `modelo` mantém seus `dados` de treino e argumentos como atributos do modelo.
!!! Example "Exemplo"
=== "Python"
```python
from ultralytics import YOLO
# Carregar um modelo
model = YOLO('yolov8n.pt') # carregar um modelo oficial
model = YOLO('caminho/para/best.pt') # carregar um modelo personalizado
# Validar o modelo
metrics = model.val() # sem a necessidade de argumentos, dataset e configurações lembradas
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # uma lista contém map50-95 de cada categoria
```
=== "CLI"
```bash
yolo detect val model=yolov8n.pt # validação do modelo oficial
yolo detect val model=caminho/para/best.pt # validação do modelo personalizado
```
## Predizer
Use um modelo YOLOv8n treinado para fazer predições em imagens.
!!! Example "Exemplo"
=== "Python"
```python
from ultralytics import YOLO
# Carregar um modelo
model = YOLO('yolov8n.pt') # carregar um modelo oficial
model = YOLO('caminho/para/best.pt') # carregar um modelo personalizado
# Predizer com o modelo
results = model('https://ultralytics.com/images/bus.jpg') # predizer em uma imagem
```
=== "CLI"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predizer com modelo oficial
yolo detect predict model=caminho/para/best.pt source='https://ultralytics.com/images/bus.jpg' # predizer com modelo personalizado
```
Veja os detalhes completos do modo `predict` na página [Predição](https://docs.ultralytics.com/modes/predict/).
## Exportar
Exporte um modelo YOLOv8n para um formato diferente, como ONNX, CoreML, etc.
!!! Example "Exemplo"
=== "Python"
```python
from ultralytics import YOLO
# Carregar um modelo
model = YOLO('yolov8n.pt') # carregar um modelo oficial
model = YOLO('caminho/para/best.pt') # carregar um modelo treinado personalizado
# Exportar o modelo
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # exportar modelo oficial
yolo export model=caminho/para/best.pt format=onnx # exportar modelo treinado personalizado
```
Os formatos de exportação YOLOv8 disponíveis estão na tabela abaixo. Você pode fazer predições ou validar diretamente em modelos exportados, ou seja, `yolo predict model=yolov8n.onnx`. Exemplos de uso são mostrados para o seu modelo após a exportação ser concluída.
| Formato | Argumento `format` | Modelo | Metadados | Argumentos |
|--------------------------------------------------------------------|--------------------|---------------------------|-----------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - |
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` |
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half` |
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras` |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |
Veja os detalhes completos de `exportar` na página [Exportação](https://docs.ultralytics.com/modes/export/).