--- comments: true description: Ultralytics에서 지원하는 YOLO 계열, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR 모델의 다양한 범위를 탐색하고 CLI 및 Python 사용 예시를 통해 시작해 보세요. keywords: Ultralytics, 문서화, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, 모델, 아키텍처, Python, CLI --- # Ultralytics에서 지원하는 모델 Ultralytics 모델 문서에 오신 것을 환영합니다! 저희는 [객체 검출](../tasks/detect.md), [인스턴스 분할](../tasks/segment.md), [이미지 분류](../tasks/classify.md), [자세 추정](../tasks/pose.md), [다중 객체 추적](../modes/track.md) 등 특정 작업에 맞춤화된 다양한 모델을 지원합니다. Ultralytics에 모델 아키텍처를 기여하고자 한다면, 저희의 [기여 가이드](../../help/contributing.md)를 확인해 주세요. !!! note 🚧 현재 다국어 문서화 작업이 진행 중이며 문서를 개선하기 위해 열심히 작업하고 있습니다. 기다려 주셔서 감사합니다! 🙏 ## 주요 모델 여기 몇 가지 주요 모델을 소개합니다: 1. **[YOLOv3](../../models/yolov3.md)**: Joseph Redmon에 의해 처음 제안된 YOLO 모델 계열의 세 번째 버전으로, 효율적인 실시간 객체 검출 능력으로 알려져 있습니다. 2. **[YOLOv4](../../models/yolov4.md)**: 2020년 Alexey Bochkovskiy에 의해 발표된 YOLOv3의 다크넷 기반 업데이트 버전입니다. 3. **[YOLOv5](../../models/yolov5.md)**: Ultralytics에 의해 개선된 YOLO 아키텍처 버전으로, 이전 버전들과 비교해 더 나은 성능 및 속도 저하를 제공합니다. 4. **[YOLOv6](../../models/yolov6.md)**: 2022년 [Meituan](https://about.meituan.com/)에 의해 발표되었으며, 회사의 자율 배송 로봇에 많이 사용되고 있습니다. 5. **[YOLOv7](../../models/yolov7.md)**: YOLOv4의 저자들에 의해 2022년에 발표된 업데이트된 YOLO 모델입니다. 6. **[YOLOv8](../../models/yolov8.md)**: YOLO 계열의 최신 버전으로, 인스턴스 분할, 자세/키포인트 추정 및 분류 등 향상된 기능을 제공합니다. 7. **[Segment Anything Model (SAM)](../../models/sam.md)**: Meta의 Segment Anything Model (SAM)입니다. 8. **[Mobile Segment Anything Model (MobileSAM)](../../models/mobile-sam.md)**: 경희대학교에 의한 모바일 애플리케이션용 MobileSAM입니다. 9. **[Fast Segment Anything Model (FastSAM)](../../models/fast-sam.md)**: 중국 과학원 자동화 연구소의 영상 및 비디오 분석 그룹에 의한 FastSAM입니다. 10. **[YOLO-NAS](../../models/yolo-nas.md)**: YOLO Neural Architecture Search (NAS) 모델입니다. 11. **[Realtime Detection Transformers (RT-DETR)](../../models/rtdetr.md)**: Baidu의 PaddlePaddle Realtime Detection Transformer (RT-DETR) 모델입니다.
보기: 몇 줄의 코드로 Ultralytics YOLO 모델을 실행하세요.