# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:latest-conda image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Image is optimized for Ultralytics Anaconda (https://anaconda.org/conda-forge/ultralytics) installation and usage # Start FROM miniconda3 image https://hub.docker.com/r/continuumio/miniconda3 FROM continuumio/miniconda3:latest # Downloads to user config dir ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ /root/.config/Ultralytics/ # Install linux packages RUN apt update \ && apt install --no-install-recommends -y libgl1 # Copy contents ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt . # Install conda packages # mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory' RUN conda config --set solver libmamba && \ conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia && \ conda install -c conda-forge ultralytics mkl # conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=12.1 ultralytics mkl # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-conda && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t # Run # t=ultralytics/ultralytics:latest-conda && sudo docker run -it --ipc=host $t # Pull and Run # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host $t # Pull and Run with local volume mounted # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t