--- comments: true description: Discover VisionEye's object mapping and tracking powered by Ultralytics YOLO11. Simulate human eye precision, track objects, and calculate distances effortlessly. keywords: VisionEye, YOLO11, Ultralytics, object mapping, object tracking, distance calculation, computer vision, AI, machine learning, Python, tutorial --- # VisionEye View Object Mapping using Ultralytics YOLO11 🚀 ## What is VisionEye Object Mapping? [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) VisionEye offers the capability for computers to identify and pinpoint objects, simulating the observational [precision](https://www.ultralytics.com/glossary/precision) of the human eye. This functionality enables computers to discern and focus on specific objects, much like the way the human eye observes details from a particular viewpoint. ## Samples | VisionEye View | VisionEye View With Object Tracking | VisionEye View With Distance Calculation | | :----------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | ![VisionEye View Object Mapping using Ultralytics YOLO11](https://github.com/ultralytics/docs/releases/download/0/visioneye-view-object-mapping-yolov8.avif) | ![VisionEye View Object Mapping with Object Tracking using Ultralytics YOLO11](https://github.com/ultralytics/docs/releases/download/0/visioneye-object-mapping-with-tracking.avif) | ![VisionEye View with Distance Calculation using Ultralytics YOLO11](https://github.com/ultralytics/docs/releases/download/0/visioneye-distance-calculation-yolov8.avif) | | VisionEye View Object Mapping using Ultralytics YOLO11 | VisionEye View Object Mapping with Object Tracking using Ultralytics YOLO11 | VisionEye View with Distance Calculation using Ultralytics YOLO11 | !!! example "VisionEye Object Mapping using YOLO11" === "VisionEye Object Mapping" ```python import cv2 from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors model = YOLO("yolo11n.pt") names = model.model.names cap = cv2.VideoCapture("path/to/video/file.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) out = cv2.VideoWriter("visioneye-pinpoint.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h)) center_point = (-10, h) while True: ret, im0 = cap.read() if not ret: print("Video frame is empty or video processing has been successfully completed.") break results = model.predict(im0) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() annotator = Annotator(im0, line_width=2) for box, cls in zip(boxes, clss): annotator.box_label(box, label=names[int(cls)], color=colors(int(cls))) annotator.visioneye(box, center_point) out.write(im0) cv2.imshow("visioneye-pinpoint", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break out.release() cap.release() cv2.destroyAllWindows() ``` === "VisionEye Object Mapping with Object Tracking" ```python import cv2 from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) out = cv2.VideoWriter("visioneye-pinpoint.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h)) center_point = (-10, h) while True: ret, im0 = cap.read() if not ret: print("Video frame is empty or video processing has been successfully completed.") break annotator = Annotator(im0, line_width=2) results = model.track(im0, persist=True) boxes = results[0].boxes.xyxy.cpu() if results[0].boxes.id is not None: track_ids = results[0].boxes.id.int().cpu().tolist() for box, track_id in zip(boxes, track_ids): annotator.box_label(box, label=str(track_id), color=colors(int(track_id))) annotator.visioneye(box, center_point) out.write(im0) cv2.imshow("visioneye-pinpoint", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break out.release() cap.release() cv2.destroyAllWindows() ``` === "VisionEye with Distance Calculation" ```python import math import cv2 from ultralytics import YOLO from ultralytics.utils.plotting import Annotator model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("Path/to/video/file.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) out = cv2.VideoWriter("visioneye-distance-calculation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h)) center_point = (0, h) pixel_per_meter = 10 txt_color, txt_background, bbox_clr = ((0, 0, 0), (255, 255, 255), (255, 0, 255)) while True: ret, im0 = cap.read() if not ret: print("Video frame is empty or video processing has been successfully completed.") break annotator = Annotator(im0, line_width=2) results = model.track(im0, persist=True) boxes = results[0].boxes.xyxy.cpu() if results[0].boxes.id is not None: track_ids = results[0].boxes.id.int().cpu().tolist() for box, track_id in zip(boxes, track_ids): annotator.box_label(box, label=str(track_id), color=bbox_clr) annotator.visioneye(box, center_point) x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) # Bounding box centroid distance = (math.sqrt((x1 - center_point[0]) ** 2 + (y1 - center_point[1]) ** 2)) / pixel_per_meter text_size, _ = cv2.getTextSize(f"Distance: {distance:.2f} m", cv2.FONT_HERSHEY_SIMPLEX, 1.2, 3) cv2.rectangle(im0, (x1, y1 - text_size[1] - 10), (x1 + text_size[0] + 10, y1), txt_background, -1) cv2.putText(im0, f"Distance: {distance:.2f} m", (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.2, txt_color, 3) out.write(im0) cv2.imshow("visioneye-distance-calculation", im0) if cv2.waitKey(1) & 0xFF == ord("q"): break out.release() cap.release() cv2.destroyAllWindows() ``` ### `visioneye` Arguments | Name | Type | Default | Description | | ----------- | ------- | ---------------- | ------------------------------ | | `color` | `tuple` | `(235, 219, 11)` | Line and object centroid color | | `pin_color` | `tuple` | `(255, 0, 255)` | VisionEye pinpoint color | ## Note For any inquiries, feel free to post your questions in the [Ultralytics Issue Section](https://github.com/ultralytics/ultralytics/issues/new/choose) or the discussion section mentioned below. ## FAQ ### How do I start using VisionEye Object Mapping with Ultralytics YOLO11? To start using VisionEye Object Mapping with Ultralytics YOLO11, first, you'll need to install the Ultralytics YOLO package via pip. Then, you can use the sample code provided in the documentation to set up [object detection](https://www.ultralytics.com/glossary/object-detection) with VisionEye. Here's a simple example to get you started: ```python import cv2 from ultralytics import YOLO model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") while True: ret, frame = cap.read() if not ret: break results = model.predict(frame) for result in results: # Perform custom logic with result pass cv2.imshow("visioneye", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() ``` ### What are the key features of VisionEye's object tracking capability using Ultralytics YOLO11? VisionEye's object tracking with Ultralytics YOLO11 allows users to follow the movement of objects within a video frame. Key features include: 1. **Real-Time Object Tracking**: Keeps up with objects as they move. 2. **Object Identification**: Utilizes YOLO11's powerful detection algorithms. 3. **Distance Calculation**: Calculates distances between objects and specified points. 4. **Annotation and Visualization**: Provides visual markers for tracked objects. Here's a brief code snippet demonstrating tracking with VisionEye: ```python import cv2 from ultralytics import YOLO model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") while True: ret, frame = cap.read() if not ret: break results = model.track(frame, persist=True) for result in results: # Annotate and visualize tracking pass cv2.imshow("visioneye-tracking", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() ``` For a comprehensive guide, visit the [VisionEye Object Mapping with Object Tracking](#samples). ### How can I calculate distances with VisionEye's YOLO11 model? Distance calculation with VisionEye and Ultralytics YOLO11 involves determining the distance of detected objects from a specified point in the frame. It enhances spatial analysis capabilities, useful in applications such as autonomous driving and surveillance. Here's a simplified example: ```python import math import cv2 from ultralytics import YOLO model = YOLO("yolo11n.pt") cap = cv2.VideoCapture("path/to/video/file.mp4") center_point = (0, 480) # Example center point pixel_per_meter = 10 while True: ret, frame = cap.read() if not ret: break results = model.track(frame, persist=True) for result in results: # Calculate distance logic distances = [ (math.sqrt((box[0] - center_point[0]) ** 2 + (box[1] - center_point[1]) ** 2)) / pixel_per_meter for box in results ] cv2.imshow("visioneye-distance", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() ``` For detailed instructions, refer to the [VisionEye with Distance Calculation](#samples). ### Why should I use Ultralytics YOLO11 for object mapping and tracking? Ultralytics YOLO11 is renowned for its speed, [accuracy](https://www.ultralytics.com/glossary/accuracy), and ease of integration, making it a top choice for object mapping and tracking. Key advantages include: 1. **State-of-the-art Performance**: Delivers high accuracy in real-time object detection. 2. **Flexibility**: Supports various tasks such as detection, tracking, and distance calculation. 3. **Community and Support**: Extensive documentation and active GitHub community for troubleshooting and enhancements. 4. **Ease of Use**: Intuitive API simplifies complex tasks, allowing for rapid deployment and iteration. For more information on applications and benefits, check out the [Ultralytics YOLO11 documentation](https://docs.ultralytics.com/models/yolov8/). ### How can I integrate VisionEye with other [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) tools like Comet or ClearML? Ultralytics YOLO11 can integrate seamlessly with various machine learning tools like Comet and ClearML, enhancing experiment tracking, collaboration, and reproducibility. Follow the detailed guides on [how to use YOLOv5 with Comet](https://www.ultralytics.com/blog/how-to-use-yolov5-with-comet) and [integrate YOLO11 with ClearML](https://docs.ultralytics.com/integrations/clearml/) to get started. For further exploration and integration examples, check our [Ultralytics Integrations Guide](https://docs.ultralytics.com/integrations/).