# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import urllib from copy import copy from pathlib import Path import cv2 import numpy as np import pytest import torch import yaml from PIL import Image from tests import CFG, IS_TMP_WRITEABLE, MODEL, SOURCE, TMP from ultralytics import RTDETR, YOLO from ultralytics.cfg import MODELS, TASK2DATA, TASKS from ultralytics.data.build import load_inference_source from ultralytics.utils import ( ASSETS, DEFAULT_CFG, DEFAULT_CFG_PATH, LOGGER, ONLINE, ROOT, WEIGHTS_DIR, WINDOWS, checks, ) from ultralytics.utils.downloads import download from ultralytics.utils.torch_utils import TORCH_1_9 def test_model_forward(): """Test the forward pass of the YOLO model.""" model = YOLO(CFG) model(source=None, imgsz=32, augment=True) # also test no source and augment def test_model_methods(): """Test various methods and properties of the YOLO model.""" model = YOLO(MODEL) # Model methods model.info(verbose=True, detailed=True) model = model.reset_weights() model = model.load(MODEL) model.to("cpu") model.fuse() model.clear_callback("on_train_start") model.reset_callbacks() # Model properties _ = model.names _ = model.device _ = model.transforms _ = model.task_map def test_model_profile(): """Test profiling of the YOLO model with 'profile=True' argument.""" from ultralytics.nn.tasks import DetectionModel model = DetectionModel() # build model im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 _ = model.predict(im, profile=True) @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") def test_predict_txt(): """Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file.""" txt_file = TMP / "sources.txt" with open(txt_file, "w") as f: for x in [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]: f.write(f"{x}\n") _ = YOLO(MODEL)(source=txt_file, imgsz=32) @pytest.mark.parametrize("model_name", MODELS) def test_predict_img(model_name): """Test YOLO prediction on various types of image sources.""" model = YOLO(WEIGHTS_DIR / model_name) im = cv2.imread(str(SOURCE)) # uint8 numpy array assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(torch.rand((2, 3, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path "https://ultralytics.com/images/zidane.jpg" if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3), dtype=np.uint8), # numpy ] assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch @pytest.mark.parametrize("model", MODELS) def test_predict_visualize(model): """Test model predict methods with 'visualize=True' arguments.""" YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True) def test_predict_grey_and_4ch(): """Test YOLO prediction on SOURCE converted to greyscale and 4-channel images.""" im = Image.open(SOURCE) directory = TMP / "im4" directory.mkdir(parents=True, exist_ok=True) source_greyscale = directory / "greyscale.jpg" source_rgba = directory / "4ch.png" source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg" source_spaces = directory / "image with spaces.jpg" im.convert("L").save(source_greyscale) # greyscale im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha im.save(source_non_utf) # non-UTF characters in filename im.save(source_spaces) # spaces in filename # Inference model = YOLO(MODEL) for f in source_rgba, source_greyscale, source_non_utf, source_spaces: for source in Image.open(f), cv2.imread(str(f)), f: results = model(source, save=True, verbose=True, imgsz=32) assert len(results) == 1 # verify that an image was run f.unlink() # cleanup @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_youtube(): """ Test YouTube inference. Note: ConnectionError may occur during this test due to network instability or YouTube server availability. """ model = YOLO(MODEL) try: model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True) # Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests' except (urllib.error.HTTPError, ConnectionError) as e: LOGGER.warning(f"WARNING: YouTube Test Error: {e}") @pytest.mark.skipif(not ONLINE, reason="environment is offline") @pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") def test_track_stream(): """ Test streaming tracking (short 10 frame video) with non-default ByteTrack tracker. Note imgsz=160 required for tracking for higher confidence and better matches """ video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov" model = YOLO(MODEL) model.track(video_url, imgsz=160, tracker="bytetrack.yaml") model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also # Test Global Motion Compensation (GMC) methods for gmc in "orb", "sift", "ecc": with open(ROOT / "cfg/trackers/botsort.yaml", encoding="utf-8") as f: data = yaml.safe_load(f) tracker = TMP / f"botsort-{gmc}.yaml" data["gmc_method"] = gmc with open(tracker, "w", encoding="utf-8") as f: yaml.safe_dump(data, f) model.track(video_url, imgsz=160, tracker=tracker) def test_val(): """Test the validation mode of the YOLO model.""" YOLO(MODEL).val(data="coco8.yaml", imgsz=32, save_hybrid=True) def test_train_scratch(): """Test training the YOLO model from scratch.""" model = YOLO(CFG) model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model") model(SOURCE) def test_train_pretrained(): """Test training the YOLO model from a pre-trained state.""" model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0) model(SOURCE) def test_all_model_yamls(): """Test YOLO model creation for all available YAML configurations.""" for m in (ROOT / "cfg" / "models").rglob("*.yaml"): if "rtdetr" in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' _ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 else: YOLO(m.name) def test_workflow(): """Test the complete workflow including training, validation, prediction, and exporting.""" model = YOLO(MODEL) model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD") model.val(imgsz=32) model.predict(SOURCE, imgsz=32) model.export(format="torchscript") def test_predict_callback_and_setup(): """Test callback functionality during YOLO prediction.""" def on_predict_batch_end(predictor): """Callback function that handles operations at the end of a prediction batch.""" path, im0s, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size] model = YOLO(MODEL) model.add_callback("on_predict_batch_end", on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True, imgsz=160) # source already setup for r, im0, bs in results: print("test_callback", im0.shape) print("test_callback", bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) @pytest.mark.parametrize("model", MODELS) def test_results(model): """Test various result formats for the YOLO model.""" results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160) for r in results: r = r.cpu().numpy() r = r.to(device="cpu", dtype=torch.float32) r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True) r.save_crop(save_dir=TMP / "runs/tests/crops/") r.tojson(normalize=True) r.plot(pil=True) r.plot(conf=True, boxes=True) print(r, len(r), r.path) def test_labels_and_crops(): """Test output from prediction args for saving detection labels and crops.""" imgs = [SOURCE, ASSETS / "zidane.jpg"] results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True) save_path = Path(results[0].save_dir) for r in results: im_name = Path(r.path).stem cls_idxs = r.boxes.cls.int().tolist() # Check label path labels = save_path / f"labels/{im_name}.txt" assert labels.exists() # Check detections match label count assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line]) # Check crops path and files crop_dirs = list((save_path / "crops").iterdir()) crop_files = [f for p in crop_dirs for f in p.glob("*")] # Crop directories match detections assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs) # Same number of crops as detections assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data) @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_data_utils(): """Test utility functions in ultralytics/data/utils.py.""" from ultralytics.data.utils import HUBDatasetStats, autosplit from ultralytics.utils.downloads import zip_directory # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): for task in TASKS: file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP) stats = HUBDatasetStats(TMP / file, task=task) stats.get_json(save=True) stats.process_images() autosplit(TMP / "coco8") zip_directory(TMP / "coco8/images/val") # zip @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_data_converter(): """Test dataset converters.""" from ultralytics.data.converter import coco80_to_coco91_class, convert_coco file = "instances_val2017.json" download(f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}", dir=TMP) convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True) coco80_to_coco91_class() def test_data_annotator(): """Test automatic data annotation.""" from ultralytics.data.annotator import auto_annotate auto_annotate( ASSETS, det_model=WEIGHTS_DIR / "yolov8n.pt", sam_model=WEIGHTS_DIR / "mobile_sam.pt", output_dir=TMP / "auto_annotate_labels", ) def test_events(): """Test event sending functionality.""" from ultralytics.hub.utils import Events events = Events() events.enabled = True cfg = copy(DEFAULT_CFG) # does not require deepcopy cfg.mode = "test" events(cfg) def test_cfg_init(): """Test configuration initialization utilities.""" from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value with contextlib.suppress(SyntaxError): check_dict_alignment({"a": 1}, {"b": 2}) copy_default_cfg() (Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False) [smart_value(x) for x in ["none", "true", "false"]] def test_utils_init(): """Test initialization utilities.""" from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running get_ubuntu_version() is_github_action_running() get_git_origin_url() get_git_branch() def test_utils_checks(): """Test various utility checks.""" checks.check_yolov5u_filename("yolov5n.pt") checks.git_describe(ROOT) checks.check_requirements() # check requirements.txt checks.check_imgsz([600, 600], max_dim=1) checks.check_imshow(warn=True) checks.check_version("ultralytics", "8.0.0") checks.print_args() @pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)") def test_utils_benchmarks(): """Test model benchmarking.""" from ultralytics.utils.benchmarks import ProfileModels ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() def test_utils_torchutils(): """Test Torch utility functions.""" from ultralytics.nn.modules.conv import Conv from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync x = torch.randn(1, 64, 20, 20) m = Conv(64, 64, k=1, s=2) profile(x, [m], n=3) get_flops_with_torch_profiler(m) time_sync() @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_utils_downloads(): """Test file download utilities.""" from ultralytics.utils.downloads import get_google_drive_file_info get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link") def test_utils_ops(): """Test various operations utilities.""" from ultralytics.utils.ops import ( ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr, ) make_divisible(17, torch.tensor([8])) boxes = torch.rand(10, 4) # xywh torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) boxes = torch.rand(10, 5) # xywhr for OBB boxes[:, 4] = torch.randn(10) * 30 torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) def test_utils_files(): """Test file handling utilities.""" from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path file_age(SOURCE) file_date(SOURCE) get_latest_run(ROOT / "runs") path = TMP / "path/with spaces" path.mkdir(parents=True, exist_ok=True) with spaces_in_path(path) as new_path: print(new_path) @pytest.mark.slow def test_utils_patches_torch_save(): """Test torch_save backoff when _torch_save throws RuntimeError.""" from unittest.mock import MagicMock, patch from ultralytics.utils.patches import torch_save mock = MagicMock(side_effect=RuntimeError) with patch("ultralytics.utils.patches._torch_save", new=mock): with pytest.raises(RuntimeError): torch_save(torch.zeros(1), TMP / "test.pt") assert mock.call_count == 4, "torch_save was not attempted the expected number of times" def test_nn_modules_conv(): """Test Convolutional Neural Network modules.""" from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests DWConvTranspose2d(c1, c2)(x) ConvTranspose(c1, c2)(x) Focus(c1, c2)(x) CBAM(c1)(x) # Fuse ops m = Conv2(c1, c2) m.fuse_convs() m(x) def test_nn_modules_block(): """Test Neural Network block modules.""" from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x c1, c2 = 8, 16 # input and output channels x = torch.zeros(4, c1, 10, 10) # BCHW # Run all modules not otherwise covered in tests C1(c1, c2)(x) C3x(c1, c2)(x) C3TR(c1, c2)(x) C3Ghost(c1, c2)(x) BottleneckCSP(c1, c2)(x) @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_hub(): """Test Ultralytics HUB functionalities.""" from ultralytics.hub import export_fmts_hub, logout from ultralytics.hub.utils import smart_request export_fmts_hub() logout() smart_request("GET", "https://github.com", progress=True) @pytest.fixture def image(): """Loads an image from a predefined source using OpenCV.""" return cv2.imread(str(SOURCE)) @pytest.mark.parametrize( "auto_augment, erasing, force_color_jitter", [ (None, 0.0, False), ("randaugment", 0.5, True), ("augmix", 0.2, False), ("autoaugment", 0.0, True), ], ) def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter): """Tests classification transforms during training with various augmentation settings.""" from ultralytics.data.augment import classify_augmentations transform = classify_augmentations( size=224, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), hflip=0.5, vflip=0.5, auto_augment=auto_augment, hsv_h=0.015, hsv_s=0.4, hsv_v=0.4, force_color_jitter=force_color_jitter, erasing=erasing, ) transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))) assert transformed_image.shape == (3, 224, 224) assert torch.is_tensor(transformed_image) assert transformed_image.dtype == torch.float32 @pytest.mark.slow @pytest.mark.skipif(not ONLINE, reason="environment is offline") def test_model_tune(): """Tune YOLO model for performance.""" YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") def test_model_embeddings(): """Test YOLO model embeddings.""" model_detect = YOLO(MODEL) model_segment = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2 assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch) assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch) @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12") def test_yolo_world(): """Tests YOLO world models with different configurations, including classes, detection, and training scenarios.""" model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet model.set_classes(["tree", "window"]) model(SOURCE, conf=0.01) model = YOLO("yolov8s-worldv2.pt") # no YOLOv8n-world model yet # Training from a pretrained model. Eval is included at the final stage of training. # Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model model.train( data="dota8.yaml", epochs=1, imgsz=32, cache="disk", close_mosaic=1, ) # test WorWorldTrainerFromScratch from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch model = YOLO("yolov8s-worldv2.yaml") # no YOLOv8n-world model yet model.train( data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}}, epochs=1, imgsz=32, cache="disk", close_mosaic=1, trainer=WorldTrainerFromScratch, )