--- comments: true description: 探索 Ultralytics 支持的 YOLO 系列、SAM、MobileSAM、FastSAM、YOLO-NAS 和 RT-DETR 模型多样化的范围。提供 CLI 和 Python 使用的示例以供入门。 keywords: Ultralytics, 文档, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, 模型, 架构, Python, CLI --- # Ultralytics 支持的模型 欢迎来到 Ultralytics 的模型文档!我们支持多种模型,每种模型都针对特定任务进行了优化,如[对象检测](/../tasks/detect.md)、[实例分割](/../tasks/segment.md)、[图像分类](/../tasks/classify.md)、[姿态估计](/../tasks/pose.md)和[多对象追踪](/../modes/track.md)。如果您有兴趣将您的模型架构贡献给 Ultralytics,请查看我们的[贡献指南](/../help/contributing.md)。 !!! Note Ultralytics 团队正忙于将文档翻译成多种语言。本页面上的链接目前可能会导向英文文档页面,因为我们正在努力扩展多语言文档支持。感谢您的耐心等待 🙏! ## 特色模型 以下是一些关键支持的模型: 1. **[YOLOv3](/../models/yolov3.md)**:YOLO 模型系列的第三个版本,最初由 Joseph Redmon 提出,以其高效的实时对象检测能力而闻名。 2. **[YOLOv4](/../models/yolov4.md)**:YOLOv3 的 darknet 本地更新,由 Alexey Bochkovskiy 在 2020 年发布。 3. **[YOLOv5](/../models/yolov5.md)**:Ultralytics 改进的 YOLO 架构版本,与之前的版本相比提供了更好的性能和速度折中选择。 4. **[YOLOv6](/../models/yolov6.md)**:由 [美团](https://about.meituan.com/) 在 2022 年发布,并在公司众多自主配送机器人中使用。 5. **[YOLOv7](/../models/yolov7.md)**:YOLOv4 作者在 2022 年发布的更新版 YOLO 模型。 6. **[YOLOv8](/../models/yolov8.md)**:YOLO 系列的最新版本,具备增强的功能,如实例分割、姿态/关键点估计和分类。 7. **[Segment Anything Model (SAM)](/../models/sam.md)**:Meta's Segment Anything Model (SAM)。 8. **[Mobile Segment Anything Model (MobileSAM)](/../models/mobile-sam.md)**:由庆熙大学为移动应用程序打造的 MobileSAM。 9. **[Fast Segment Anything Model (FastSAM)](/../models/fast-sam.md)**:中国科学院自动化研究所图像与视频分析组的 FastSAM。 10. **[YOLO-NAS](/../models/yolo-nas.md)**:YOLO 神经架构搜索 (NAS) 模型。 11. **[Realtime Detection Transformers (RT-DETR)](/../models/rtdetr.md)**:百度 PaddlePaddle 实时检测变换器 (RT-DETR) 模型。
观看:仅使用几行代码运行 Ultralytics YOLO 模型。