# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib from pathlib import Path import pytest from ultralytics import YOLO, download from ultralytics.utils import ASSETS, DATASETS_DIR, ROOT, SETTINGS, WEIGHTS_DIR from ultralytics.utils.checks import check_requirements MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ASSETS / 'bus.jpg' TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files @pytest.mark.skipif(not check_requirements('ray', install=False), reason='ray[tune] not installed') def test_model_ray_tune(): """Tune YOLO model with Ray optimization library.""" YOLO('yolov8n-cls.yaml').tune(use_ray=True, data='imagenet10', grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device='cpu') @pytest.mark.skipif(not check_requirements('mlflow', install=False), reason='mlflow not installed') def test_mlflow(): """Test training with MLflow tracking enabled.""" SETTINGS['mlflow'] = True YOLO('yolov8n-cls.yaml').train(data='imagenet10', imgsz=32, epochs=3, plots=False, device='cpu') @pytest.mark.skipif(not check_requirements('tritonclient', install=False), reason='tritonclient[all] not installed') def test_triton(): """Test NVIDIA Triton Server functionalities.""" check_requirements('tritonclient[all]') import subprocess import time from tritonclient.http import InferenceServerClient # noqa # Create variables model_name = 'yolo' triton_repo_path = TMP / 'triton_repo' triton_model_path = triton_repo_path / model_name # Export model to ONNX f = YOLO(MODEL).export(format='onnx', dynamic=True) # Prepare Triton repo (triton_model_path / '1').mkdir(parents=True, exist_ok=True) Path(f).rename(triton_model_path / '1' / 'model.onnx') (triton_model_path / 'config.pbtxt').touch() # Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver tag = 'nvcr.io/nvidia/tritonserver:23.09-py3' # 6.4 GB # Pull the image subprocess.call(f'docker pull {tag}', shell=True) # Run the Triton server and capture the container ID container_id = subprocess.check_output( f'docker run -d --rm -v {triton_repo_path}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models', shell=True).decode('utf-8').strip() # Wait for the Triton server to start triton_client = InferenceServerClient(url='localhost:8000', verbose=False, ssl=False) # Wait until model is ready for _ in range(10): with contextlib.suppress(Exception): assert triton_client.is_model_ready(model_name) break time.sleep(1) # Check Triton inference YOLO(f'http://localhost:8000/{model_name}', 'detect')(SOURCE) # exported model inference # Kill and remove the container at the end of the test subprocess.call(f'docker kill {container_id}', shell=True) @pytest.mark.skipif(not check_requirements('pycocotools', install=False), reason='pycocotools not installed') def test_pycocotools(): """Validate model predictions using pycocotools.""" from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.models.yolo.pose import PoseValidator from ultralytics.models.yolo.segment import SegmentationValidator # Download annotations after each dataset downloads first url = 'https://github.com/ultralytics/assets/releases/download/v8.1.0/' args = {'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64} validator = DetectionValidator(args=args) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations') _ = validator.eval_json(validator.stats) args = {'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64} validator = SegmentationValidator(args=args) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations') _ = validator.eval_json(validator.stats) args = {'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64} validator = PoseValidator(args=args) validator() validator.is_coco = True download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations') _ = validator.eval_json(validator.stats)