# Ultralytics YOLO 🚀, AGPL-3.0 license import subprocess import pytest from ultralytics.utils import ASSETS, WEIGHTS_DIR from ultralytics.utils.checks import cuda_device_count, cuda_is_available CUDA_IS_AVAILABLE = cuda_is_available() CUDA_DEVICE_COUNT = cuda_device_count() TASK_ARGS = [ ("detect", "yolov8n", "coco8.yaml"), ("segment", "yolov8n-seg", "coco8-seg.yaml"), ("classify", "yolov8n-cls", "imagenet10"), ("pose", "yolov8n-pose", "coco8-pose.yaml"), ("obb", "yolov8n-obb", "dota8.yaml"), ] # (task, model, data) EXPORT_ARGS = [ ("yolov8n", "torchscript"), ("yolov8n-seg", "torchscript"), ("yolov8n-cls", "torchscript"), ("yolov8n-pose", "torchscript"), ("yolov8n-obb", "torchscript"), ] # (model, format) def run(cmd): """Execute a shell command using subprocess.""" subprocess.run(cmd.split(), check=True) def test_special_modes(): """Test various special command modes of YOLO.""" run("yolo help") run("yolo checks") run("yolo version") run("yolo settings reset") run("yolo cfg") @pytest.mark.parametrize("task,model,data", TASK_ARGS) def test_train(task, model, data): """Test YOLO training for a given task, model, and data.""" run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk") @pytest.mark.parametrize("task,model,data", TASK_ARGS) def test_val(task, model, data): """Test YOLO validation for a given task, model, and data.""" run(f"yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json") @pytest.mark.parametrize("task,model,data", TASK_ARGS) def test_predict(task, model, data): """Test YOLO prediction on sample assets for a given task and model.""" run(f"yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt") @pytest.mark.parametrize("model,format", EXPORT_ARGS) def test_export(model, format): """Test exporting a YOLO model to different formats.""" run(f"yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32") def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"): """Test the RTDETR functionality with the Ultralytics framework.""" # Warning: MUST use imgsz=640 run(f"yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk") # add coma, spaces to args run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt") def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"): """Test FastSAM segmentation functionality within Ultralytics.""" source = ASSETS / "bus.jpg" run(f"yolo segment val {task} model={model} data={data} imgsz=32") run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt") from ultralytics import FastSAM from ultralytics.models.fastsam import FastSAMPrompt from ultralytics.models.sam import Predictor # Create a FastSAM model sam_model = FastSAM(model) # or FastSAM-x.pt # Run inference on an image everything_results = sam_model(source, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) # Remove small regions new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) # Everything prompt prompt_process = FastSAMPrompt(source, everything_results, device="cpu") ann = prompt_process.everything_prompt() # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2] ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300]) # Text prompt ann = prompt_process.text_prompt(text="a photo of a dog") # Point prompt # Points default [[0,0]] [[x1,y1],[x2,y2]] # Point_label default [0] [1,0] 0:background, 1:foreground ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1]) prompt_process.plot(annotations=ann, output="./") def test_mobilesam(): """Test MobileSAM segmentation functionality using Ultralytics.""" from ultralytics import SAM # Load the model model = SAM(WEIGHTS_DIR / "mobile_sam.pt") # Source source = ASSETS / "zidane.jpg" # Predict a segment based on a point prompt model.predict(source, points=[900, 370], labels=[1]) # Predict a segment based on a box prompt model.predict(source, bboxes=[439, 437, 524, 709]) # Predict all # model(source) # Slow Tests ----------------------------------------------------------------------------------------------------------- @pytest.mark.slow @pytest.mark.parametrize("task,model,data", TASK_ARGS) @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") @pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason="DDP is not available") def test_train_gpu(task, model, data): """Test YOLO training on GPU(s) for various tasks and models.""" run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0") # single GPU run(f"yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1") # multi GPU