---
comments: true
description: Deep dive into Ultralytics' YOLOv5. Learn about object detection model - YOLOv5, how to train it on custom data, multi-GPU training and more.
keywords: Ultralytics, YOLOv5, Deep Learning, Object detection, PyTorch, Tutorial, Multi-GPU training, Custom data training
---
# Comprehensive Guide to Ultralytics YOLOv5
## Tutorials
Here's a compilation of comprehensive tutorials that will guide you through different aspects of YOLOv5.
* [Train Custom Data](tutorials/train_custom_data.md) 🚀 RECOMMENDED: Learn how to train the YOLOv5 model on your custom dataset.
* [Tips for Best Training Results](tutorials/tips_for_best_training_results.md) ☘️: Uncover practical tips to optimize your model training process.
* [Multi-GPU Training](tutorials/multi_gpu_training.md): Understand how to leverage multiple GPUs to expedite your training.
* [PyTorch Hub](tutorials/pytorch_hub_model_loading.md) 🌟 NEW: Learn to load pre-trained models via PyTorch Hub.
* [TFLite, ONNX, CoreML, TensorRT Export](tutorials/model_export.md) 🚀: Understand how to export your model to different formats.
* [NVIDIA Jetson platform Deployment](tutorials/running_on_jetson_nano.md) 🌟 NEW: Learn how to deploy your YOLOv5 model on NVIDIA Jetson platform.
* [Test-Time Augmentation (TTA)](tutorials/test_time_augmentation.md): Explore how to use TTA to improve your model's prediction accuracy.
* [Model Ensembling](tutorials/model_ensembling.md): Learn the strategy of combining multiple models for improved performance.
* [Model Pruning/Sparsity](tutorials/model_pruning_and_sparsity.md): Understand pruning and sparsity concepts, and how to create a more efficient model.
* [Hyperparameter Evolution](tutorials/hyperparameter_evolution.md): Discover the process of automated hyperparameter tuning for better model performance.
* [Transfer Learning with Frozen Layers](tutorials/transfer_learning_with_frozen_layers.md): Learn how to implement transfer learning by freezing layers in YOLOv5.
* [Architecture Summary](tutorials/architecture_description.md) 🌟 Delve into the structural details of the YOLOv5 model.
* [Roboflow for Datasets](tutorials/roboflow_datasets_integration.md): Understand how to utilize Roboflow for dataset management, labeling, and active learning.
* [ClearML Logging](tutorials/clearml_logging_integration.md) 🌟 Learn how to integrate ClearML for efficient logging during your model training.
* [YOLOv5 with Neural Magic](tutorials/neural_magic_pruning_quantization.md) Discover how to use Neural Magic's Deepsparse to prune and quantize your YOLOv5 model.
* [Comet Logging](tutorials/comet_logging_integration.md) 🌟 NEW: Explore how to utilize Comet for improved model training logging.
## Environments
YOLOv5 is designed to be run in the following up-to-date, verified environments, with all dependencies (including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/)) pre-installed:
- **Notebooks** with free GPU:
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](environments/google_cloud_quickstart_tutorial.md)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](environments/aws_quickstart_tutorial.md)
- **Azure** Azure Machine Learning. See [AzureML Quickstart Guide](environments/azureml_quickstart_tutorial.md)
- **Docker Image**. See [Docker Quickstart Guide](environments/docker_image_quickstart_tutorial.md)
## Status
This badge signifies that all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify the correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and with every new commit.