{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "YOLOv8 Tutorial", "provenance": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "t6MPjfT5NrKQ" }, "source": [ "
\n", "\n", " \n", " \n", "\n", " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n", "\n", " \"Ultralytics\n", " \"Run\n", " \"Open\n", " \"Open\n", " \"Discord\"\n", "\n", "Welcome to the Ultralytics YOLOv8 🚀 notebook! YOLOv8 is the latest version of the YOLO (You Only Look Once) AI models developed by Ultralytics. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLOv8 and understand its features and capabilities.\n", "\n", "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n", "\n", "We hope that the resources in this notebook will help you get the most out of YOLOv8. Please browse the YOLOv8 Docs for details, raise an issue on GitHub for support, and join our Discord community for questions and discussions!\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "7mGmQbAO5pQb" }, "source": [ "# Setup\n", "\n", "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware.\n", "\n", "[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)" ] }, { "cell_type": "code", "metadata": { "id": "wbvMlHd_QwMG", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "96335d4c-20a9-4864-f7a4-bb2eb0077a9d" }, "source": [ "%pip install ultralytics\n", "import ultralytics\n", "ultralytics.checks()" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.2.3 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 28.8/78.2 GB disk)\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "4JnkELT0cIJg" }, "source": [ "# 1. Predict\n", "\n", "YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/usage/cfg/) and other details in the [YOLOv8 Predict Docs](https://docs.ultralytics.com/modes/train/).\n" ] }, { "cell_type": "code", "metadata": { "id": "zR9ZbuQCH7FX", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "84f32db2-80b0-4f35-9a2a-a56d11f7863f" }, "source": [ "# Run inference on an image with YOLOv8n\n", "!yolo predict model=yolov8n.pt source='https://ultralytics.com/images/zidane.jpg'" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt to 'yolov8n.pt'...\n", "100% 6.23M/6.23M [00:00<00:00, 83.2MB/s]\n", "Ultralytics YOLOv8.2.3 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs\n", "\n", "Downloading https://ultralytics.com/images/zidane.jpg to 'zidane.jpg'...\n", "100% 165k/165k [00:00<00:00, 11.1MB/s]\n", "image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 21.4ms\n", "Speed: 1.9ms preprocess, 21.4ms inference, 6.2ms postprocess per image at shape (1, 3, 384, 640)\n", "Results saved to \u001b[1mruns/detect/predict\u001b[0m\n", "💡 Learn more at https://docs.ultralytics.com/modes/predict\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "hkAzDWJ7cWTr" }, "source": [ "        \n", "" ] }, { "cell_type": "markdown", "metadata": { "id": "0eq1SMWl6Sfn" }, "source": [ "# 2. Val\n", "Validate a model's accuracy on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset's `val` or `test` splits. The latest YOLOv8 [models](https://github.com/ultralytics/ultralytics#models) are downloaded automatically the first time they are used. See [YOLOv8 Val Docs](https://docs.ultralytics.com/modes/val/) for more information." ] }, { "cell_type": "code", "metadata": { "id": "WQPtK1QYVaD_" }, "source": [ "# Download COCO val\n", "import torch\n", "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n", "!unzip -q tmp.zip -d datasets && rm tmp.zip # unzip" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "X58w8JLpMnjH", "outputId": "bed10d45-ceb6-4b6f-86b7-9428208b142a", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "# Validate YOLOv8n on COCO8 val\n", "!yolo val model=yolov8n.pt data=coco8.yaml" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.2.3 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs\n", "\n", "Dataset 'coco8.yaml' images not found ⚠️, missing path '/content/datasets/coco8/images/val'\n", "Downloading https://ultralytics.com/assets/coco8.zip to '/content/datasets/coco8.zip'...\n", "100% 433k/433k [00:00<00:00, 14.2MB/s]\n", "Unzipping /content/datasets/coco8.zip to /content/datasets/coco8...: 100% 25/25 [00:00<00:00, 1093.93file/s]\n", "Dataset download success ✅ (1.3s), saved to \u001b[1m/content/datasets\u001b[0m\n", "\n", "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n", "100% 755k/755k [00:00<00:00, 17.4MB/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 157.00it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco8/labels/val.cache\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:06<00:00, 6.89s/it]\n", " all 4 17 0.621 0.833 0.888 0.63\n", " person 4 10 0.721 0.5 0.519 0.269\n", " dog 4 1 0.37 1 0.995 0.597\n", " horse 4 2 0.751 1 0.995 0.631\n", " elephant 4 2 0.505 0.5 0.828 0.394\n", " umbrella 4 1 0.564 1 0.995 0.995\n", " potted plant 4 1 0.814 1 0.995 0.895\n", "Speed: 0.3ms preprocess, 4.9ms inference, 0.0ms loss, 1.3ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/val\u001b[0m\n", "💡 Learn more at https://docs.ultralytics.com/modes/val\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "ZY2VXXXu74w5" }, "source": [ "# 3. Train\n", "\n", "

\n", "\n", "Train YOLOv8 on [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/) datasets. See [YOLOv8 Train Docs](https://docs.ultralytics.com/modes/train/) for more information." ] }, { "cell_type": "code", "source": [ "#@title Select YOLOv8 🚀 logger {run: 'auto'}\n", "logger = 'Comet' #@param ['Comet', 'TensorBoard']\n", "\n", "if logger == 'Comet':\n", " %pip install -q comet_ml\n", " import comet_ml; comet_ml.init()\n", "elif logger == 'TensorBoard':\n", " %load_ext tensorboard\n", " %tensorboard --logdir ." ], "metadata": { "id": "ktegpM42AooT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1NcFxRcFdJ_O", "outputId": "9f60c6cb-fa9c-4785-cb7a-71d40abeaf38", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "# Train YOLOv8n on COCO8 for 3 epochs\n", "!yolo train model=yolov8n.pt data=coco8.yaml epochs=3 imgsz=640" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Ultralytics YOLOv8.2.3 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco8.yaml, epochs=3, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train\n", "\n", " from n params module arguments \n", " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", " 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n", " 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n", " 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", " 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n", " 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", " 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n", " 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n", " 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n", " 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", " 22 [15, 18, 21] 1 897664 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]] \n", "Model summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs\n", "\n", "Transferred 355/355 items from pretrained weights\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train', view at http://localhost:6006/\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco8/labels/train... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 837.19it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco8/labels/train.cache\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", " self.pid = os.fork()\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00\n" ], "metadata": { "id": "Phm9ccmOKye5" } }, { "cell_type": "markdown", "source": [ "## 1. Detection\n", "\n", "YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for full details.\n" ], "metadata": { "id": "yq26lwpYK1lq" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n, train it on COCO128 for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n.pt') # load a pretrained YOLOv8n detection model\n", "model.train(data='coco8.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "8Go5qqS9LbC5" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 2. Segmentation\n", "\n", "YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for full details.\n" ], "metadata": { "id": "7ZW58jUzK66B" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-seg, train it on COCO128-seg for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-seg.pt') # load a pretrained YOLOv8n segmentation model\n", "model.train(data='coco8-seg.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "WFPJIQl_L5HT" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 3. Classification\n", "\n", "YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for full details.\n" ], "metadata": { "id": "ax3p94VNK9zR" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-cls, train it on mnist160 for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-cls.pt') # load a pretrained YOLOv8n classification model\n", "model.train(data='mnist160', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "5q9Zu6zlL5rS" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 4. Pose\n", "\n", "YOLOv8 _pose_ models use the `-pose` suffix, i.e. `yolov8n-pose.pt` and are pretrained on COCO Keypoints. See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for full details." ], "metadata": { "id": "SpIaFLiO11TG" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-pose, train it on COCO8-pose for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-pose.pt') # load a pretrained YOLOv8n pose model\n", "model.train(data='coco8-pose.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "si4aKFNg19vX" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## 4. Oriented Bounding Boxes (OBB)\n", "\n", "YOLOv8 _OBB_ models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on the DOTA dataset. See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for full details." ], "metadata": { "id": "cf5j_T9-B5F0" } }, { "cell_type": "code", "source": [ "# Load YOLOv8n-obb, train it on DOTA8 for 3 epochs and predict an image with it\n", "from ultralytics import YOLO\n", "\n", "model = YOLO('yolov8n-obb.pt') # load a pretrained YOLOv8n OBB model\n", "model.train(data='coco8-dota.yaml', epochs=3) # train the model\n", "model('https://ultralytics.com/images/bus.jpg') # predict on an image" ], "metadata": { "id": "IJNKClOOB5YS" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "IEijrePND_2I" }, "source": [ "# Appendix\n", "\n", "Additional content below." ] }, { "cell_type": "code", "source": [ "# Pip install from source\n", "!pip install git+https://github.com/ultralytics/ultralytics@main" ], "metadata": { "id": "pIdE6i8C3LYp" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Git clone and run tests on updates branch\n", "!git clone https://github.com/ultralytics/ultralytics -b main\n", "%pip install -qe ultralytics" ], "metadata": { "id": "uRKlwxSJdhd1" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Run tests (Git clone only)\n", "!pytest ultralytics/tests" ], "metadata": { "id": "GtPlh7mcCGZX" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Validate multiple models\n", "for x in 'nsmlx':\n", " !yolo val model=yolov8{x}.pt data=coco.yaml" ], "metadata": { "id": "Wdc6t_bfzDDk" }, "execution_count": null, "outputs": [] } ] }