# Ultralytics YOLO 🚀, AGPL-3.0 license import argparse import cv2 import numpy as np from tflite_runtime import interpreter as tflite from ultralytics.utils import ASSETS, yaml_load from ultralytics.utils.checks import check_yaml # Declare as global variables, can be updated based trained model image size img_width = 640 img_height = 640 class LetterBox: def __init__( self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32 ): self.new_shape = new_shape self.auto = auto self.scaleFill = scaleFill self.scaleup = scaleup self.stride = stride self.center = center # Put the image in the middle or top-left def __call__(self, labels=None, image=None): """Return updated labels and image with added border.""" if labels is None: labels = {} img = labels.get("img") if image is None else image shape = img.shape[:2] # current shape [height, width] new_shape = labels.pop("rect_shape", self.new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not self.scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if self.auto: # minimum rectangle dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding elif self.scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios if self.center: dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) ) # add border if labels.get("ratio_pad"): labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation if len(labels): labels = self._update_labels(labels, ratio, dw, dh) labels["img"] = img labels["resized_shape"] = new_shape return labels else: return img def _update_labels(self, labels, ratio, padw, padh): """Update labels.""" labels["instances"].convert_bbox(format="xyxy") labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) labels["instances"].scale(*ratio) labels["instances"].add_padding(padw, padh) return labels class Yolov8TFLite: def __init__(self, tflite_model, input_image, confidence_thres, iou_thres): """ Initializes an instance of the Yolov8TFLite class. Args: tflite_model: Path to the TFLite model. input_image: Path to the input image. confidence_thres: Confidence threshold for filtering detections. iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. """ self.tflite_model = tflite_model self.input_image = input_image self.confidence_thres = confidence_thres self.iou_thres = iou_thres # Load the class names from the COCO dataset self.classes = yaml_load(check_yaml("coco8.yaml"))["names"] # Generate a color palette for the classes self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) def draw_detections(self, img, box, score, class_id): """ Draws bounding boxes and labels on the input image based on the detected objects. Args: img: The input image to draw detections on. box: Detected bounding box. score: Corresponding detection score. class_id: Class ID for the detected object. Returns: None """ # Extract the coordinates of the bounding box x1, y1, w, h = box # Retrieve the color for the class ID color = self.color_palette[class_id] # Draw the bounding box on the image cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # Create the label text with class name and score label = f"{self.classes[class_id]}: {score:.2f}" # Calculate the dimensions of the label text (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # Calculate the position of the label text label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # Draw a filled rectangle as the background for the label text cv2.rectangle( img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) # Draw the label text on the image cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(self): """ Preprocesses the input image before performing inference. Returns: image_data: Preprocessed image data ready for inference. """ # Read the input image using OpenCV self.img = cv2.imread(self.input_image) print("image before", self.img) # Get the height and width of the input image self.img_height, self.img_width = self.img.shape[:2] letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32) image = letterbox(image=self.img) image = [image] image = np.stack(image) image = image[..., ::-1].transpose((0, 3, 1, 2)) img = np.ascontiguousarray(image) # n, h, w, c image = img.astype(np.float32) return image / 255 def postprocess(self, input_image, output): """ Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. Args: input_image (numpy.ndarray): The input image. output (numpy.ndarray): The output of the model. Returns: numpy.ndarray: The input image with detections drawn on it. """ boxes = [] scores = [] class_ids = [] for pred in output: pred = np.transpose(pred) for box in pred: x, y, w, h = box[:4] x1 = x - w / 2 y1 = y - h / 2 boxes.append([x1, y1, w, h]) idx = np.argmax(box[4:]) scores.append(box[idx + 4]) class_ids.append(idx) indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) for i in indices: # Get the box, score, and class ID corresponding to the index box = boxes[i] gain = min(img_width / self.img_width, img_height / self.img_height) pad = ( round((img_width - self.img_width * gain) / 2 - 0.1), round((img_height - self.img_height * gain) / 2 - 0.1), ) box[0] = (box[0] - pad[0]) / gain box[1] = (box[1] - pad[1]) / gain box[2] = box[2] / gain box[3] = box[3] / gain score = scores[i] class_id = class_ids[i] if score > 0.25: print(box, score, class_id) # Draw the detection on the input image self.draw_detections(input_image, box, score, class_id) return input_image def main(self): """ Performs inference using a TFLite model and returns the output image with drawn detections. Returns: output_img: The output image with drawn detections. """ # Create an interpreter for the TFLite model interpreter = tflite.Interpreter(model_path=self.tflite_model) self.model = interpreter interpreter.allocate_tensors() # Get the model inputs input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Store the shape of the input for later use input_shape = input_details[0]["shape"] self.input_width = input_shape[1] self.input_height = input_shape[2] # Preprocess the image data img_data = self.preprocess() img_data = img_data # img_data = img_data.cpu().numpy() # Set the input tensor to the interpreter print(input_details[0]["index"]) print(img_data.shape) img_data = img_data.transpose((0, 2, 3, 1)) scale, zero_point = input_details[0]["quantization"] img_data_int8 = (img_data / scale + zero_point).astype(np.int8) interpreter.set_tensor(input_details[0]["index"], img_data_int8) # Run inference interpreter.invoke() # Get the output tensor from the interpreter output = interpreter.get_tensor(output_details[0]["index"]) scale, zero_point = output_details[0]["quantization"] output = (output.astype(np.float32) - zero_point) * scale output[:, [0, 2]] *= img_width output[:, [1, 3]] *= img_height print(output) # Perform post-processing on the outputs to obtain output image. return self.postprocess(self.img, output) if __name__ == "__main__": # Create an argument parser to handle command-line arguments parser = argparse.ArgumentParser() parser.add_argument( "--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model." ) parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") args = parser.parse_args() # Create an instance of the Yolov8TFLite class with the specified arguments detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres) # Perform object detection and obtain the output image output_image = detection.main() # Display the output image in a window cv2.imshow("Output", output_image) # Wait for a key press to exit cv2.waitKey(0)