--- comments: true description: Discover an interactive way to perform object detection with Ultralytics YOLOv8 using Gradio. Upload images and adjust settings for real-time results. keywords: Ultralytics, YOLOv8, Gradio, object detection, interactive, real-time, image processing, AI --- # Interactive Object Detection: Gradio & Ultralytics YOLOv8 🚀 ## Introduction to Interactive Object Detection This Gradio interface provides an easy and interactive way to perform object detection using the [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) model. Users can upload images and adjust parameters like confidence threshold and intersection-over-union (IoU) threshold to get real-time detection results.



Watch: Gradio Integration with Ultralytics YOLOv8

## Why Use Gradio for Object Detection? * **User-Friendly Interface:** Gradio offers a straightforward platform for users to upload images and visualize detection results without any coding requirement. * **Real-Time Adjustments:** Parameters such as confidence and IoU thresholds can be adjusted on the fly, allowing for immediate feedback and optimization of detection results. * **Broad Accessibility:** The Gradio web interface can be accessed by anyone, making it an excellent tool for demonstrations, educational purposes, and quick experiments.

Gradio example screenshot

## How to Install the Gradio ```bash pip install gradio ``` ## How to Use the Interface 1. **Upload Image:** Click on 'Upload Image' to choose an image file for object detection. 2. **Adjust Parameters:** * **Confidence Threshold:** Slider to set the minimum confidence level for detecting objects. * **IoU Threshold:** Slider to set the IoU threshold for distinguishing different objects. 3. **View Results:** The processed image with detected objects and their labels will be displayed. ## Example Use Cases * **Sample Image 1:** Bus detection with default thresholds. * **Sample Image 2:** Detection on a sports image with default thresholds. ## Usage Example This section provides the Python code used to create the Gradio interface with the Ultralytics YOLOv8 model. Supports classification tasks, detection tasks, segmentation tasks, and key point tasks. ```python import gradio as gr import PIL.Image as Image from ultralytics import ASSETS, YOLO model = YOLO("yolov8n.pt") def predict_image(img, conf_threshold, iou_threshold): """Predicts and plots labeled objects in an image using YOLOv8 model with adjustable confidence and IOU thresholds.""" results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=gr.Image(type="pil", label="Result"), title="Ultralytics Gradio", description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.", examples=[ [ASSETS / "bus.jpg", 0.25, 0.45], [ASSETS / "zidane.jpg", 0.25, 0.45], ], ) if __name__ == "__main__": iface.launch() ``` ## Parameters Explanation | Parameter Name | Type | Description | |------------------|---------|----------------------------------------------------------| | `img` | `Image` | The image on which object detection will be performed. | | `conf_threshold` | `float` | Confidence threshold for detecting objects. | | `iou_threshold` | `float` | Intersection-over-union threshold for object separation. | ### Gradio Interface Components | Component | Description | |--------------|------------------------------------------| | Image Input | To upload the image for detection. | | Sliders | To adjust confidence and IoU thresholds. | | Image Output | To display the detection results. |