--- comments: true description: Security Alarm System Project Using Ultralytics YOLOv8. Learn How to implement a Security Alarm System Using ultralytics YOLOv8 keywords: Object Detection, Security Alarm, Object Tracking, YOLOv8, Computer Vision Projects --- # Security Alarm System Project Using Ultralytics YOLOv8 Security Alarm System The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanced computer vision capabilities to enhance security measures. YOLOv8, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages: - **Real-time Detection:** YOLOv8's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time. - **Accuracy:** YOLOv8 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system. - **Integration Capabilities:** The project can be seamlessly integrated with existing security infrastructure, providing an upgraded layer of intelligent surveillance.



Watch: Security Alarm System Project with Ultralytics YOLOv8 Object Detection

### Code #### Import Libraries ```python import torch import numpy as np import cv2 from time import time from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText ``` #### Set up the parameters of the message ???+ tip "Note" App Password Generation is necessary - Navigate to [App Password Generator](https://myaccount.google.com/apppasswords), designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated password field as instructed. ```python password = "" from_email = "" # must match the email used to generate the password to_email = "" # receiver email ``` #### Server creation and authentication ```python server = smtplib.SMTP('smtp.gmail.com: 587') server.starttls() server.login(from_email, password) ``` #### Email Send Function ```python def send_email(to_email, from_email, object_detected=1): message = MIMEMultipart() message['From'] = from_email message['To'] = to_email message['Subject'] = "Security Alert" # Add in the message body message_body = f'ALERT - {object_detected} objects has been detected!!' message.attach(MIMEText(message_body, 'plain')) server.sendmail(from_email, to_email, message.as_string()) ``` #### Object Detection and Alert Sender ```python class ObjectDetection: def __init__(self, capture_index): # default parameters self.capture_index = capture_index self.email_sent = False # model information self.model = YOLO("yolov8n.pt") # visual information self.annotator = None self.start_time = 0 self.end_time = 0 # device information self.device = 'cuda' if torch.cuda.is_available() else 'cpu' def predict(self, im0): results = self.model(im0) return results def display_fps(self, im0): self.end_time = time() fps = 1 / np.round(self.end_time - self.start_time, 2) text = f'FPS: {int(fps)}' text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0] gap = 10 cv2.rectangle(im0, (20 - gap, 70 - text_size[1] - gap), (20 + text_size[0] + gap, 70 + gap), (255, 255, 255), -1) cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2) def plot_bboxes(self, results, im0): class_ids = [] self.annotator = Annotator(im0, 3, results[0].names) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() names = results[0].names for box, cls in zip(boxes, clss): class_ids.append(cls) self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True)) return im0, class_ids def __call__(self): cap = cv2.VideoCapture(self.capture_index) assert cap.isOpened() cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) frame_count = 0 while True: self.start_time = time() ret, im0 = cap.read() assert ret results = self.predict(im0) im0, class_ids = self.plot_bboxes(results, im0) if len(class_ids) > 0: # Only send email If not sent before if not self.email_sent: send_email(to_email, from_email, len(class_ids)) self.email_sent = True else: self.email_sent = False self.display_fps(im0) cv2.imshow('YOLOv8 Detection', im0) frame_count += 1 if cv2.waitKey(5) & 0xFF == 27: break cap.release() cv2.destroyAllWindows() server.quit() ``` #### Call the Object Detection class and Run the Inference ```python detector = ObjectDetection(capture_index=0) detector() ``` That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements. #### Email Received Sample Email Received Sample