#include "inference.h" #include #define benchmark #define min(a,b) (((a) < (b)) ? (a) : (b)) YOLO_V8::YOLO_V8() { } YOLO_V8::~YOLO_V8() { delete session; } #ifdef USE_CUDA namespace Ort { template<> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; } #endif template char* BlobFromImage(cv::Mat& iImg, T& iBlob) { int channels = iImg.channels(); int imgHeight = iImg.rows; int imgWidth = iImg.cols; for (int c = 0; c < channels; c++) { for (int h = 0; h < imgHeight; h++) { for (int w = 0; w < imgWidth; w++) { iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer::type( (iImg.at(h, w)[c]) / 255.0f); } } } return RET_OK; } char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector iImgSize, cv::Mat& oImg) { if (iImg.channels() == 3) { oImg = iImg.clone(); cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB); } else { cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB); } switch (modelType) { case YOLO_DETECT_V8: case YOLO_POSE: case YOLO_DETECT_V8_HALF: case YOLO_POSE_V8_HALF://LetterBox { if (iImg.cols >= iImg.rows) { resizeScales = iImg.cols / (float)iImgSize.at(0); cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales))); } else { resizeScales = iImg.rows / (float)iImgSize.at(0); cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1))); } cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3); oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows))); oImg = tempImg; break; } case YOLO_CLS://CenterCrop { int h = iImg.rows; int w = iImg.cols; int m = min(h, w); int top = (h - m) / 2; int left = (w - m) / 2; cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1))); break; } } return RET_OK; } char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) { char* Ret = RET_OK; std::regex pattern("[\u4e00-\u9fa5]"); bool result = std::regex_search(iParams.modelPath, pattern); if (result) { Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters."; std::cout << Ret << std::endl; return Ret; } try { rectConfidenceThreshold = iParams.rectConfidenceThreshold; iouThreshold = iParams.iouThreshold; imgSize = iParams.imgSize; modelType = iParams.modelType; env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo"); Ort::SessionOptions sessionOption; if (iParams.cudaEnable) { cudaEnable = iParams.cudaEnable; OrtCUDAProviderOptions cudaOption; cudaOption.device_id = 0; sessionOption.AppendExecutionProvider_CUDA(cudaOption); } sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads); sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel); #ifdef _WIN32 int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast(iParams.modelPath.length()), nullptr, 0); wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1]; MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast(iParams.modelPath.length()), wide_cstr, ModelPathSize); wide_cstr[ModelPathSize] = L'\0'; const wchar_t* modelPath = wide_cstr; #else const char* modelPath = iParams.modelPath.c_str(); #endif // _WIN32 session = new Ort::Session(env, modelPath, sessionOption); Ort::AllocatorWithDefaultOptions allocator; size_t inputNodesNum = session->GetInputCount(); for (size_t i = 0; i < inputNodesNum; i++) { Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator); char* temp_buf = new char[50]; strcpy(temp_buf, input_node_name.get()); inputNodeNames.push_back(temp_buf); } size_t OutputNodesNum = session->GetOutputCount(); for (size_t i = 0; i < OutputNodesNum; i++) { Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator); char* temp_buf = new char[10]; strcpy(temp_buf, output_node_name.get()); outputNodeNames.push_back(temp_buf); } options = Ort::RunOptions{ nullptr }; WarmUpSession(); return RET_OK; } catch (const std::exception& e) { const char* str1 = "[YOLO_V8]:"; const char* str2 = e.what(); std::string result = std::string(str1) + std::string(str2); char* merged = new char[result.length() + 1]; std::strcpy(merged, result.c_str()); std::cout << merged << std::endl; delete[] merged; return "[YOLO_V8]:Create session failed."; } } char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector& oResult) { #ifdef benchmark clock_t starttime_1 = clock(); #endif // benchmark char* Ret = RET_OK; cv::Mat processedImg; PreProcess(iImg, imgSize, processedImg); if (modelType < 4) { float* blob = new float[processedImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) }; TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); } else { #ifdef USE_CUDA half* blob = new half[processedImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) }; TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); #endif } return Ret; } template char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector& inputNodeDims, std::vector& oResult) { Ort::Value inputTensor = Ort::Value::CreateTensor::type>( Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size()); #ifdef benchmark clock_t starttime_2 = clock(); #endif // benchmark auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size()); #ifdef benchmark clock_t starttime_3 = clock(); #endif // benchmark Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo(); auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo(); std::vector outputNodeDims = tensor_info.GetShape(); auto output = outputTensor.front().GetTensorMutableData::type>(); delete[] blob; switch (modelType) { case YOLO_DETECT_V8: case YOLO_DETECT_V8_HALF: { int signalResultNum = outputNodeDims[1];//84 int strideNum = outputNodeDims[2];//8400 std::vector class_ids; std::vector confidences; std::vector boxes; cv::Mat rawData; if (modelType == YOLO_DETECT_V8) { // FP32 rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output); } else { // FP16 rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output); rawData.convertTo(rawData, CV_32F); } // Note: // ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape // https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt rawData = rawData.t(); float* data = (float*)rawData.data; for (int i = 0; i < strideNum; ++i) { float* classesScores = data + 4; cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores); cv::Point class_id; double maxClassScore; cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); if (maxClassScore > rectConfidenceThreshold) { confidences.push_back(maxClassScore); class_ids.push_back(class_id.x); float x = data[0]; float y = data[1]; float w = data[2]; float h = data[3]; int left = int((x - 0.5 * w) * resizeScales); int top = int((y - 0.5 * h) * resizeScales); int width = int(w * resizeScales); int height = int(h * resizeScales); boxes.push_back(cv::Rect(left, top, width, height)); } data += signalResultNum; } std::vector nmsResult; cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult); for (int i = 0; i < nmsResult.size(); ++i) { int idx = nmsResult[i]; DL_RESULT result; result.classId = class_ids[idx]; result.confidence = confidences[idx]; result.box = boxes[idx]; oResult.push_back(result); } #ifdef benchmark clock_t starttime_4 = clock(); double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000; double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000; double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } else { std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } #endif // benchmark break; } case YOLO_CLS: case YOLO_CLS_HALF: { cv::Mat rawData; if (modelType == YOLO_CLS) { // FP32 rawData = cv::Mat(1, this->classes.size(), CV_32F, output); } else { // FP16 rawData = cv::Mat(1, this->classes.size(), CV_16F, output); rawData.convertTo(rawData, CV_32F); } float *data = (float *) rawData.data; DL_RESULT result; for (int i = 0; i < this->classes.size(); i++) { result.classId = i; result.confidence = data[i]; oResult.push_back(result); } break; } default: std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl; } return RET_OK; } char* YOLO_V8::WarmUpSession() { clock_t starttime_1 = clock(); cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3); cv::Mat processedImg; PreProcess(iImg, imgSize, processedImg); if (modelType < 4) { float* blob = new float[iImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) }; Ort::Value input_tensor = Ort::Value::CreateTensor( Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); delete[] blob; clock_t starttime_4 = clock(); double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; } } else { #ifdef USE_CUDA half* blob = new half[iImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) }; Ort::Value input_tensor = Ort::Value::CreateTensor(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); delete[] blob; clock_t starttime_4 = clock(); double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; } #endif } return RET_OK; }