#include #include #include #include #include "inference.h" using namespace std; using namespace cv; int main(int argc, char **argv) { std::string projectBasePath = "/home/user/ultralytics"; // Set your ultralytics base path bool runOnGPU = true; // // Pass in either: // // "yolov8s.onnx" or "yolov5s.onnx" // // To run Inference with yolov8/yolov5 (ONNX) // // Note that in this example the classes are hard-coded and 'classes.txt' is a place holder. Inference inf(projectBasePath + "/yolov8s.onnx", cv::Size(640, 640), "classes.txt", runOnGPU); std::vector imageNames; imageNames.push_back(projectBasePath + "/ultralytics/assets/bus.jpg"); imageNames.push_back(projectBasePath + "/ultralytics/assets/zidane.jpg"); for (int i = 0; i < imageNames.size(); ++i) { cv::Mat frame = cv::imread(imageNames[i]); // Inference starts here... std::vector output = inf.runInference(frame); int detections = output.size(); std::cout << "Number of detections:" << detections << std::endl; for (int i = 0; i < detections; ++i) { Detection detection = output[i]; cv::Rect box = detection.box; cv::Scalar color = detection.color; // Detection box cv::rectangle(frame, box, color, 2); // Detection box text std::string classString = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4); cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0); cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20); cv::rectangle(frame, textBox, color, cv::FILLED); cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0); } // Inference ends here... // This is only for preview purposes float scale = 0.8; cv::resize(frame, frame, cv::Size(frame.cols*scale, frame.rows*scale)); cv::imshow("Inference", frame); cv::waitKey(-1); } }