# Ultralytics YOLO 🚀, AGPL-3.0 license from itertools import product from pathlib import Path import pytest import torch from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE from ultralytics import YOLO from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS from ultralytics.utils import ASSETS, WEIGHTS_DIR from ultralytics.utils.checks import check_amp def test_checks(): """Validate CUDA settings against torch CUDA functions.""" assert torch.cuda.is_available() == CUDA_IS_AVAILABLE assert torch.cuda.device_count() == CUDA_DEVICE_COUNT @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_amp(): """Test AMP training checks.""" model = YOLO("yolo11n.pt").model.cuda() assert check_amp(model) @pytest.mark.slow @pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability") @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") @pytest.mark.parametrize( "task, dynamic, int8, half, batch", [ # generate all combinations but exclude those where both int8 and half are True (task, dynamic, int8, half, batch) # Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high # for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2]) for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2]) if not (int8 and half) # exclude cases where both int8 and half are True ], ) def test_export_engine_matrix(task, dynamic, int8, half, batch): """Test YOLO model export to TensorRT format for various configurations and run inference.""" file = YOLO(TASK2MODEL[task]).export( format="engine", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, data=TASK2DATA[task], workspace=1, # reduce workspace GB for less resource utilization during testing simplify=True, # use 'onnxslim' ) YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference Path(file).unlink() # cleanup Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_train(): """Test model training on a minimal dataset using available CUDA devices.""" device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64 @pytest.mark.slow @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_predict_multiple_devices(): """Validate model prediction consistency across CPU and CUDA devices.""" model = YOLO("yolo11n.pt") model = model.cpu() assert str(model.device) == "cpu" _ = model(SOURCE) # CPU inference assert str(model.device) == "cpu" model = model.to("cuda:0") assert str(model.device) == "cuda:0" _ = model(SOURCE) # CUDA inference assert str(model.device) == "cuda:0" model = model.cpu() assert str(model.device) == "cpu" _ = model(SOURCE) # CPU inference assert str(model.device) == "cpu" model = model.cuda() assert str(model.device) == "cuda:0" _ = model(SOURCE) # CUDA inference assert str(model.device) == "cuda:0" @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_autobatch(): """Check optimal batch size for YOLO model training using autobatch utility.""" from ultralytics.utils.autobatch import check_train_batch_size check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) @pytest.mark.slow @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_utils_benchmarks(): """Profile YOLO models for performance benchmarks.""" from ultralytics.utils.benchmarks import ProfileModels # Pre-export a dynamic engine model to use dynamic inference YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1) ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") def test_predict_sam(): """Test SAM model predictions using different prompts, including bounding boxes and point annotations.""" from ultralytics import SAM from ultralytics.models.sam import Predictor as SAMPredictor # Load a model model = SAM(WEIGHTS_DIR / "sam2.1_b.pt") # Display model information (optional) model.info() # Run inference model(SOURCE, device=0) # Run inference with bboxes prompt model(SOURCE, bboxes=[439, 437, 524, 709], device=0) # Run inference with no labels model(ASSETS / "zidane.jpg", points=[900, 370], device=0) # Run inference with 1D points and 1D labels model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0) # Run inference with 2D points and 1D labels model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0) # Run inference with multiple 2D points and 1D labels model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0) # Run inference with 3D points and 2D labels (multiple points per object) model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0) # Create SAMPredictor overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt") predictor = SAMPredictor(overrides=overrides) # Set image predictor.set_image(ASSETS / "zidane.jpg") # set with image file # predictor(bboxes=[439, 437, 524, 709]) # predictor(points=[900, 370], labels=[1]) # Reset image predictor.reset_image()