# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import pytest import torch from ultralytics import YOLO, download from ultralytics.utils import ASSETS, DATASETS_DIR, WEIGHTS_DIR from ultralytics.utils.checks import cuda_device_count, cuda_is_available CUDA_IS_AVAILABLE = cuda_is_available() CUDA_DEVICE_COUNT = cuda_device_count() MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path DATA = 'coco8.yaml' BUS = ASSETS / 'bus.jpg' def test_checks(): """Validate CUDA settings against torch CUDA functions.""" assert torch.cuda.is_available() == CUDA_IS_AVAILABLE assert torch.cuda.device_count() == CUDA_DEVICE_COUNT @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_train(): """Test model training on a minimal dataset.""" device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64 @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_predict_multiple_devices(): """Validate model prediction on multiple devices.""" model = YOLO('yolov8n.pt') model = model.cpu() assert str(model.device) == 'cpu' _ = model(BUS) # CPU inference assert str(model.device) == 'cpu' model = model.to('cuda:0') assert str(model.device) == 'cuda:0' _ = model(BUS) # CUDA inference assert str(model.device) == 'cuda:0' model = model.cpu() assert str(model.device) == 'cpu' _ = model(BUS) # CPU inference assert str(model.device) == 'cpu' model = model.cuda() assert str(model.device) == 'cuda:0' _ = model(BUS) # CUDA inference assert str(model.device) == 'cuda:0' @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_autobatch(): """Check batch size for YOLO model using autobatch.""" from ultralytics.utils.autobatch import check_train_batch_size check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_utils_benchmarks(): """Profile YOLO models for performance benchmarks.""" from ultralytics.utils.benchmarks import ProfileModels # Pre-export a dynamic engine model to use dynamic inference YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1) ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_predict_sam(): """Test SAM model prediction with various prompts.""" from ultralytics import SAM from ultralytics.models.sam import Predictor as SAMPredictor # Load a model model = SAM(WEIGHTS_DIR / 'sam_b.pt') # Display model information (optional) model.info() # Run inference model(BUS, device=0) # Run inference with bboxes prompt model(BUS, bboxes=[439, 437, 524, 709], device=0) # Run inference with points prompt model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0) # Create SAMPredictor overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model=WEIGHTS_DIR / 'mobile_sam.pt') predictor = SAMPredictor(overrides=overrides) # Set image predictor.set_image(ASSETS / 'zidane.jpg') # set with image file # predictor(bboxes=[439, 437, 524, 709]) # predictor(points=[900, 370], labels=[1]) # Reset image predictor.reset_image() @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_model_ray_tune(): """Tune YOLO model with Ray optimization library.""" with contextlib.suppress(RuntimeError): # RuntimeError may be caused by out-of-memory YOLO('yolov8n-cls.yaml').tune(use_ray=True, data='imagenet10', grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device='cpu') @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_model_tune(): """Tune YOLO model for performance.""" YOLO('yolov8n-pose.pt').tune(data='coco8-pose.yaml', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') YOLO('yolov8n-cls.pt').tune(data='imagenet10', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') def test_pycocotools(): """Validate model predictions using pycocotools.""" from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.models.yolo.pose import PoseValidator from ultralytics.models.yolo.segment import SegmentationValidator # Download annotations after each dataset downloads first url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/' args = {'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64} validator = DetectionValidator(args=args) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations') _ = validator.eval_json(validator.stats) args = {'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64} validator = SegmentationValidator(args=args) validator() validator.is_coco = True download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations') _ = validator.eval_json(validator.stats) args = {'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64} validator = PoseValidator(args=args) validator() validator.is_coco = True download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations') _ = validator.eval_json(validator.stats)