--- comments: true description: 学习如何使用Ultralytics YOLOv8进行姿态估计任务。找到预训练模型,学习如何训练、验证、预测以及导出你自己的模型。 keywords: Ultralytics, YOLO, YOLOv8, 姿态估计, 关键点检测, 物体检测, 预训练模型, 机器学习, 人工智能 --- # 姿态估计 姿态估计示例 姿态估计是一项任务,其涉及识别图像中特定点的位置,通常被称为关键点。这些关键点可以代表物体的各种部位,如关节、地标或其他显著特征。关键点的位置通常表示为一组2D `[x, y]` 或3D `[x, y, visible]` 坐标。 姿态估计模型的输出是一组点集,这些点代表图像中物体上的关键点,通常还包括每个点的置信度得分。当你需要在场景中识别物体的特定部位及其相互之间的位置时,姿态估计是一个不错的选择。



观看:使用Ultralytics YOLOv8进行姿态估计。

!!! Tip "提示" YOLOv8 _姿态_ 模型使用 `-pose` 后缀,例如 `yolov8n-pose.pt`。这些模型在 [COCO关键点](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) 数据集上进行了训练,并且适用于各种姿态估计任务。 ## [模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) 这里展示了YOLOv8预训练的姿态模型。检测、分割和姿态模型在 [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) 数据集上进行预训练,而分类模型则在 [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) 数据集上进行预训练。 [模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) 在首次使用时将自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)中下载。 | 模型 | 尺寸
(像素) | mAP姿态
50-95 | mAP姿态
50 | 速度
CPU ONNX
(毫秒) | 速度
A100 TensorRT
(毫秒) | 参数
(M) | 浮点数运算
(B) | |----------------------------------------------------------------------------------------------------|-----------------|---------------------|------------------|-----------------------------|----------------------------------|----------------|-------------------| | [YOLOv8n-姿态](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 | | [YOLOv8s-姿态](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 | | [YOLOv8m-姿态](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 | | [YOLOv8l-姿态](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 | | [YOLOv8x-姿态](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 | | [YOLOv8x-姿态-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 | - **mAPval** 值适用于[COCO 关键点 val2017](http://cocodataset.org)数据集上的单模型单尺度。
通过执行 `yolo val pose data=coco-pose.yaml device=0` 来复现。 - **速度** 是在 [亚马逊EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例上使用COCO val图像的平均值。
通过执行 `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu` 来复现。 ## 训练 在COCO128姿态数据集上训练一个YOLOv8姿态模型。 !!! Example "示例" === "Python" ```python from ultralytics import YOLO # 加载模型 model = YOLO('yolov8n-pose.yaml') # 从YAML构建一个新模型 model = YOLO('yolov8n-pose.pt') # 加载一个预训练模型(推荐用于训练) model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt') # 从YAML构建并传输权重 # 训练模型 results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640) ``` === "CLI" ```bash # 从YAML构建一个新模型并从头开始训练 yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640 # 从一个预训练的*.pt模型开始训练 yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640 # 从YAML构建一个新模型,传输预训练权重并开始训练 yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640 ``` ### 数据集格式 YOLO姿态数据集格式可详细找到在[数据集指南](/../datasets/pose/index.md)中。若要将您现有的数据集从其他格式(如COCO等)转换为YOLO格式,请使用Ultralytics的 [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) 工具。 ## 验证 在COCO128姿态数据集上验证训练好的YOLOv8n姿态模型的准确性。没有参数需要传递,因为`模型`保存了其训练`数据`和参数作为模型属性。 !!! Example "示例" === "Python" ```python from ultralytics import YOLO # 加载模型 model = YOLO('yolov8n-pose.pt') # 加载官方模型 model = YOLO('path/to/best.pt') # 加载自定义模型 # 验证模型 metrics = model.val() # 无需参数,数据集和设置都记住了 metrics.box.map # map50-95 metrics.box.map50 # map50 metrics.box.map75 # map75 metrics.box.maps # 包含每个类别map50-95的列表 ``` === "CLI" ```bash yolo pose val model=yolov8n-pose.pt # 验证官方模型 yolo pose val model=path/to/best.pt # 验证自定义模型 ``` ## 预测 使用训练好的YOLOv8n姿态模型在图片上运行预测。 !!! Example "示例" === "Python" ```python from ultralytics import YOLO # 加载模型 model = YOLO('yolov8n-pose.pt') # 加载官方模型 model = YOLO('path/to/best.pt') # 加载自定义模型 # 用模型进行预测 results = model('https://ultralytics.com/images/bus.jpg') # 在一张图片上预测 ``` === "CLI" ```bash yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg' # 用官方模型预测 yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # 用自定义模型预测 ``` 在[预测](https://docs.ultralytics.com/modes/predict/)页面中查看完整的`预测`模式细节。 ## 导出 将YOLOv8n姿态模型导出为ONNX、CoreML等不同格式。 !!! Example "示例" === "Python" ```python from ultralytics import YOLO # 加载模型 model = YOLO('yolov8n-pose.pt') # 加载官方模型 model = YOLO('path/to/best.pt') # 加载自定义训练好的模型 # 导出模型 model.export(format='onnx') ``` === "CLI" ```bash yolo export model=yolov8n-pose.pt format=onnx # 导出官方模型 yolo export model=path/to/best.pt format=onnx # 导出自定义训练好的模型 ``` 以下表格中有可用的YOLOv8姿态导出格式。您可以直接在导出的模型上进行预测或验证,例如 `yolo predict model=yolov8n-pose.onnx`。导出完成后,为您的模型显示用法示例。 | 格式 | `format` 参数 | 模型 | 元数据 | 参数 | |--------------------------------------------------------------------|---------------|--------------------------------|-----|-----------------------------------------------------| | [PyTorch](https://pytorch.org/) | - | `yolov8n-pose.pt` | ✅ | - | | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-pose.torchscript` | ✅ | `imgsz`, `optimize` | | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-pose.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` | | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-pose_openvino_model/` | ✅ | `imgsz`, `half` | | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-pose.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` | | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-pose.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` | | [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-pose_saved_model/` | ✅ | `imgsz`, `keras` | | [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-pose.pb` | ❌ | `imgsz` | | [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-pose.tflite` | ✅ | `imgsz`, `half`, `int8` | | [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-pose_edgetpu.tflite` | ✅ | `imgsz` | | [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-pose_web_model/` | ✅ | `imgsz` | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-pose_paddle_model/` | ✅ | `imgsz` | | [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-pose_ncnn_model/` | ✅ | `imgsz`, `half` | 在[导出](https://docs.ultralytics.com/modes/export/) 页面中查看完整的`导出`细节。