# Ultralytics YOLO 🚀, AGPL-3.0 license import sys from unittest import mock from ultralytics import YOLO from ultralytics.cfg import get_cfg from ultralytics.engine.exporter import Exporter from ultralytics.models.yolo import classify, detect, segment from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR CFG_DET = "yolov8n.yaml" CFG_SEG = "yolov8n-seg.yaml" CFG_CLS = "yolov8n-cls.yaml" # or 'squeezenet1_0' CFG = get_cfg(DEFAULT_CFG) MODEL = WEIGHTS_DIR / "yolov8n" def test_func(*args): # noqa """Test function callback.""" print("callback test passed") def test_export(): """Test model exporting functionality.""" exporter = Exporter() exporter.add_callback("on_export_start", test_func) assert test_func in exporter.callbacks["on_export_start"], "callback test failed" f = exporter(model=YOLO(CFG_DET).model) YOLO(f)(ASSETS) # exported model inference def test_detect(): """Test object detection functionality.""" overrides = {"data": "coco8.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False} CFG.data = "coco8.yaml" CFG.imgsz = 32 # Trainer trainer = detect.DetectionTrainer(overrides=overrides) trainer.add_callback("on_train_start", test_func) assert test_func in trainer.callbacks["on_train_start"], "callback test failed" trainer.train() # Validator val = detect.DetectionValidator(args=CFG) val.add_callback("on_val_start", test_func) assert test_func in val.callbacks["on_val_start"], "callback test failed" val(model=trainer.best) # validate best.pt # Predictor pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]}) pred.add_callback("on_predict_start", test_func) assert test_func in pred.callbacks["on_predict_start"], "callback test failed" # Confirm there is no issue with sys.argv being empty. with mock.patch.object(sys, "argv", []): result = pred(source=ASSETS, model=f"{MODEL}.pt") assert len(result), "predictor test failed" overrides["resume"] = trainer.last trainer = detect.DetectionTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f"Expected exception caught: {e}") return Exception("Resume test failed!") def test_segment(): """Test image segmentation functionality.""" overrides = {"data": "coco8-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False} CFG.data = "coco8-seg.yaml" CFG.imgsz = 32 # YOLO(CFG_SEG).train(**overrides) # works # Trainer trainer = segment.SegmentationTrainer(overrides=overrides) trainer.add_callback("on_train_start", test_func) assert test_func in trainer.callbacks["on_train_start"], "callback test failed" trainer.train() # Validator val = segment.SegmentationValidator(args=CFG) val.add_callback("on_val_start", test_func) assert test_func in val.callbacks["on_val_start"], "callback test failed" val(model=trainer.best) # validate best.pt # Predictor pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]}) pred.add_callback("on_predict_start", test_func) assert test_func in pred.callbacks["on_predict_start"], "callback test failed" result = pred(source=ASSETS, model=f"{MODEL}-seg.pt") assert len(result), "predictor test failed" # Test resume overrides["resume"] = trainer.last trainer = segment.SegmentationTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f"Expected exception caught: {e}") return Exception("Resume test failed!") def test_classify(): """Test image classification functionality.""" overrides = {"data": "imagenet10", "model": CFG_CLS, "imgsz": 32, "epochs": 1, "save": False} CFG.data = "imagenet10" CFG.imgsz = 32 # YOLO(CFG_SEG).train(**overrides) # works # Trainer trainer = classify.ClassificationTrainer(overrides=overrides) trainer.add_callback("on_train_start", test_func) assert test_func in trainer.callbacks["on_train_start"], "callback test failed" trainer.train() # Validator val = classify.ClassificationValidator(args=CFG) val.add_callback("on_val_start", test_func) assert test_func in val.callbacks["on_val_start"], "callback test failed" val(model=trainer.best) # Predictor pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]}) pred.add_callback("on_predict_start", test_func) assert test_func in pred.callbacks["on_predict_start"], "callback test failed" result = pred(source=ASSETS, model=trainer.best) assert len(result), "predictor test failed"