#include "inference.h" #include #define benchmark DCSP_CORE::DCSP_CORE() { } DCSP_CORE::~DCSP_CORE() { delete session; } #ifdef USE_CUDA namespace Ort { template<> struct TypeToTensorType { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; } #endif template char *BlobFromImage(cv::Mat &iImg, T &iBlob) { int channels = iImg.channels(); int imgHeight = iImg.rows; int imgWidth = iImg.cols; for (int c = 0; c < channels; c++) { for (int h = 0; h < imgHeight; h++) { for (int w = 0; w < imgWidth; w++) { iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer::type( (iImg.at(h, w)[c]) / 255.0f); } } } return RET_OK; } char* DL_CORE::PreProcess(cv::Mat& iImg, std::vector iImgSize, cv::Mat& oImg) { if (iImg.channels() == 3) { oImg = iImg.clone(); cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB); } else { cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB); } if (iImg.cols >= iImg.rows) { resizeScales = iImg.cols / (float)iImgSize.at(0); cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales))); } else { resizeScales = iImg.rows / (float)iImgSize.at(0); cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1))); } cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3); oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows))); oImg = tempImg; return RET_OK; } char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) { char *Ret = RET_OK; std::regex pattern("[\u4e00-\u9fa5]"); bool result = std::regex_search(iParams.ModelPath, pattern); if (result) { Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters."; std::cout << Ret << std::endl; return Ret; } try { rectConfidenceThreshold = iParams.RectConfidenceThreshold; iouThreshold = iParams.iouThreshold; imgSize = iParams.imgSize; modelType = iParams.ModelType; env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo"); Ort::SessionOptions sessionOption; if (iParams.CudaEnable) { cudaEnable = iParams.CudaEnable; OrtCUDAProviderOptions cudaOption; cudaOption.device_id = 0; sessionOption.AppendExecutionProvider_CUDA(cudaOption); } sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads); sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel); #ifdef _WIN32 int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast(iParams.ModelPath.length()), nullptr, 0); wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1]; MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast(iParams.ModelPath.length()), wide_cstr, ModelPathSize); wide_cstr[ModelPathSize] = L'\0'; const wchar_t* modelPath = wide_cstr; #else const char *modelPath = iParams.ModelPath.c_str(); #endif // _WIN32 session = new Ort::Session(env, modelPath, sessionOption); Ort::AllocatorWithDefaultOptions allocator; size_t inputNodesNum = session->GetInputCount(); for (size_t i = 0; i < inputNodesNum; i++) { Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator); char *temp_buf = new char[50]; strcpy(temp_buf, input_node_name.get()); inputNodeNames.push_back(temp_buf); } size_t OutputNodesNum = session->GetOutputCount(); for (size_t i = 0; i < OutputNodesNum; i++) { Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator); char *temp_buf = new char[10]; strcpy(temp_buf, output_node_name.get()); outputNodeNames.push_back(temp_buf); } options = Ort::RunOptions{nullptr}; WarmUpSession(); return RET_OK; } catch (const std::exception &e) { const char *str1 = "[DCSP_ONNX]:"; const char *str2 = e.what(); std::string result = std::string(str1) + std::string(str2); char *merged = new char[result.length() + 1]; std::strcpy(merged, result.c_str()); std::cout << merged << std::endl; delete[] merged; return "[DCSP_ONNX]:Create session failed."; } } char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector &oResult) { #ifdef benchmark clock_t starttime_1 = clock(); #endif // benchmark char *Ret = RET_OK; cv::Mat processedImg; PreProcess(iImg, imgSize, processedImg); if (modelType < 4) { float *blob = new float[processedImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)}; TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); } else { #ifdef USE_CUDA half* blob = new half[processedImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) }; TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); #endif } return Ret; } template char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector &inputNodeDims, std::vector &oResult) { Ort::Value inputTensor = Ort::Value::CreateTensor::type>( Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size()); #ifdef benchmark clock_t starttime_2 = clock(); #endif // benchmark auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size()); #ifdef benchmark clock_t starttime_3 = clock(); #endif // benchmark Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo(); auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo(); std::vector outputNodeDims = tensor_info.GetShape(); auto output = outputTensor.front().GetTensorMutableData::type>(); delete blob; switch (modelType) { case 1://V8_ORIGIN_FP32 case 4://V8_ORIGIN_FP16 { int strideNum = outputNodeDims[2]; int signalResultNum = outputNodeDims[1]; std::vector class_ids; std::vector confidences; std::vector boxes; cv::Mat rawData; if (modelType == 1) { // FP32 rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output); } else { // FP16 rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output); rawData.convertTo(rawData, CV_32F); } rawData = rawData.t(); float *data = (float *) rawData.data; for (int i = 0; i < strideNum; ++i) { float *classesScores = data + 4; cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores); cv::Point class_id; double maxClassScore; cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); if (maxClassScore > rectConfidenceThreshold) { confidences.push_back(maxClassScore); class_ids.push_back(class_id.x); float x = data[0]; float y = data[1]; float w = data[2]; float h = data[3]; int left = int((x - 0.5 * w) * resizeScales); int top = int((y - 0.5 * h) * resizeScales); int width = int(w * resizeScales); int height = int(h * resizeScales); boxes.emplace_back(left, top, width, height); } data += signalResultNum; } std::vector nmsResult; cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult); for (int i = 0; i < nmsResult.size(); ++i) { int idx = nmsResult[i]; DCSP_RESULT result; result.classId = class_ids[idx]; result.confidence = confidences[idx]; result.box = boxes[idx]; oResult.push_back(result); } #ifdef benchmark clock_t starttime_4 = clock(); double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000; double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000; double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } else { std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } #endif // benchmark break; } } return RET_OK; } char *DCSP_CORE::WarmUpSession() { clock_t starttime_1 = clock(); cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3); cv::Mat processedImg; PreProcess(iImg, imgSize, processedImg); if (modelType < 4) { float *blob = new float[iImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)}; Ort::Value input_tensor = Ort::Value::CreateTensor( Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); delete[] blob; clock_t starttime_4 = clock(); double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; } } else { #ifdef USE_CUDA half* blob = new half[iImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) }; Ort::Value input_tensor = Ort::Value::CreateTensor(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); delete[] blob; clock_t starttime_4 = clock(); double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; } #endif } return RET_OK; }