# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import os import subprocess import time from pathlib import Path import pytest from tests import MODEL, SOURCE, TMP from ultralytics import YOLO, download from ultralytics.utils import DATASETS_DIR, SETTINGS from ultralytics.utils.checks import check_requirements @pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed") def test_model_ray_tune(): """Tune YOLO model using Ray for hyperparameter optimization.""" YOLO("yolo11n-cls.yaml").tune( use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu" ) @pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed") def test_mlflow(): """Test training with MLflow tracking enabled (see https://mlflow.org/ for details).""" SETTINGS["mlflow"] = True YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu") SETTINGS["mlflow"] = False @pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868") @pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed") def test_mlflow_keep_run_active(): """Ensure MLflow run status matches MLFLOW_KEEP_RUN_ACTIVE environment variable settings.""" import mlflow SETTINGS["mlflow"] = True run_name = "Test Run" os.environ["MLFLOW_RUN"] = run_name # Test with MLFLOW_KEEP_RUN_ACTIVE=True os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True" YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") status = mlflow.active_run().info.status assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True" run_id = mlflow.active_run().info.run_id # Test with MLFLOW_KEEP_RUN_ACTIVE=False os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False" YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") status = mlflow.get_run(run_id=run_id).info.status assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False" # Test with MLFLOW_KEEP_RUN_ACTIVE not set os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None) YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") status = mlflow.get_run(run_id=run_id).info.status assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set" SETTINGS["mlflow"] = False @pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed") def test_triton(): """ Test NVIDIA Triton Server functionalities with YOLO model. See https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver. """ check_requirements("tritonclient[all]") from tritonclient.http import InferenceServerClient # noqa # Create variables model_name = "yolo" triton_repo = TMP / "triton_repo" # Triton repo path triton_model = triton_repo / model_name # Triton model path # Export model to ONNX f = YOLO(MODEL).export(format="onnx", dynamic=True) # Prepare Triton repo (triton_model / "1").mkdir(parents=True, exist_ok=True) Path(f).rename(triton_model / "1" / "model.onnx") (triton_model / "config.pbtxt").touch() # Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB # Pull the image subprocess.call(f"docker pull {tag}", shell=True) # Run the Triton server and capture the container ID container_id = ( subprocess.check_output( f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models", shell=True, ) .decode("utf-8") .strip() ) # Wait for the Triton server to start triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False) # Wait until model is ready for _ in range(10): with contextlib.suppress(Exception): assert triton_client.is_model_ready(model_name) break time.sleep(1) # Check Triton inference YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference # Kill and remove the container at the end of the test subprocess.call(f"docker kill {container_id}", shell=True) @pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed") def test_pycocotools(): """Validate YOLO model predictions on COCO dataset using pycocotools.""" from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.models.yolo.pose import PoseValidator from ultralytics.models.yolo.segment import SegmentationValidator # Download annotations after each dataset downloads first url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" args = {"model": "yolo11n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64} validator = DetectionValidator(args=args) validator() validator.is_coco = True download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations") _ = validator.eval_json(validator.stats) args = {"model": "yolo11n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64} validator = SegmentationValidator(args=args) validator() validator.is_coco = True download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations") _ = validator.eval_json(validator.stats) args = {"model": "yolo11n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64} validator = PoseValidator(args=args) validator() validator.is_coco = True download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations") _ = validator.eval_json(validator.stats)