# YOLO-Series ONNXRuntime Rust Demo for Core YOLO Tasks This repository provides a Rust demo for key YOLO-Series tasks such as `Classification`, `Segmentation`, `Detection`, `Pose Detection`, and `OBB` using ONNXRuntime. It supports various YOLO models (v5 - 11) across multiple vision tasks. ## Introduction - This example leverages the latest versions of both ONNXRuntime and YOLO models. - We utilize the [usls](https://github.com/jamjamjon/usls/tree/main) crate to streamline YOLO model inference, providing efficient data loading, visualization, and optimized inference performance. ## Features - **Extensive Model Compatibility**: Supports `YOLOv5`, `YOLOv6`, `YOLOv7`, `YOLOv8`, `YOLOv9`, `YOLOv10`, `YOLO11`, `YOLO-world`, `RTDETR`, and others, covering a wide range of YOLO versions. - **Versatile Task Coverage**: Includes `Classification`, `Segmentation`, `Detection`, `Pose`, and `OBB`. - **Precision Flexibility**: Works with `FP16` and `FP32` ONNX models. - **Execution Providers**: Accelerated support for `CPU`, `CUDA`, `CoreML`, and `TensorRT`. - **Dynamic Input Shapes**: Dynamically adjusts to variable `batch`, `width`, and `height` dimensions for flexible model input. - **Flexible Data Loading**: The `DataLoader` handles images, folders, videos, and video streams. - **Real-Time Display and Video Export**: `Viewer` provides real-time frame visualization and video export functions, similar to OpenCV’s `imshow()` and `imwrite()`. - **Enhanced Annotation and Visualization**: The `Annotator` facilitates comprehensive result rendering, with support for bounding boxes (HBB), oriented bounding boxes (OBB), polygons, masks, keypoints, and text labels. ## Setup Instructions ### 1. ONNXRuntime Linking
You have two options to link the ONNXRuntime library: - **Option 1: Manual Linking** - For detailed setup, consult the [ONNX Runtime linking documentation](https://ort.pyke.io/setup/linking). - **Linux or macOS**: 1. Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases). 2. Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable: ```shell export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0 ``` - **Option 2: Automatic Download** - Use the `--features auto` flag to handle downloading automatically: ```shell cargo run -r --example yolo --features auto ```
### 2. \[Optional\] Install CUDA, CuDNN, and TensorRT - The CUDA execution provider requires CUDA version `12.x`. - The TensorRT execution provider requires both CUDA `12.x` and TensorRT `10.x`. ### 3. \[Optional\] Install ffmpeg To view video frames and save video inferences, install `rust-ffmpeg`. For instructions, see: [https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies](https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies) ## Get Started ```Shell # customized cargo run -r -- --task detect --ver v8 --nc 6 --model xxx.onnx # YOLOv8 # Classify cargo run -r -- --task classify --ver v5 --scale s --width 224 --height 224 --nc 1000 # YOLOv5 cargo run -r -- --task classify --ver v8 --scale n --width 224 --height 224 --nc 1000 # YOLOv8 cargo run -r -- --task classify --ver v11 --scale n --width 224 --height 224 --nc 1000 # YOLOv11 # Detect cargo run -r -- --task detect --ver v5 --scale n # YOLOv5 cargo run -r -- --task detect --ver v6 --scale n # YOLOv6 cargo run -r -- --task detect --ver v7 --scale t # YOLOv7 cargo run -r -- --task detect --ver v8 --scale n # YOLOv8 cargo run -r -- --task detect --ver v9 --scale t # YOLOv9 cargo run -r -- --task detect --ver v10 --scale n # YOLOv10 cargo run -r -- --task detect --ver v11 --scale n # YOLOv11 cargo run -r -- --task detect --ver rtdetr --scale l # RTDETR # Pose cargo run -r -- --task pose --ver v8 --scale n # YOLOv8-Pose cargo run -r -- --task pose --ver v11 --scale n # YOLOv11-Pose # Segment cargo run -r -- --task segment --ver v5 --scale n # YOLOv5-Segment cargo run -r -- --task segment --ver v8 --scale n # YOLOv8-Segment cargo run -r -- --task segment --ver v11 --scale n # YOLOv8-Segment cargo run -r -- --task segment --ver v8 --model yolo/FastSAM-s-dyn-f16.onnx # FastSAM # OBB cargo run -r -- --ver v8 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv8-Obb cargo run -r -- --ver v11 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv11-Obb ``` **`cargo run -- --help` for more options** For more details, please refer to [usls-yolo](https://github.com/jamjamjon/usls/tree/main/examples/yolo).