Update NVIDIA Jetson TensorRT Benchmarks (#16156)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/16086/head^2
Lakshantha Dissanayake 8 months ago committed by GitHub
parent be71a43773
commit fbc6bae5af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 32
      docs/en/guides/nvidia-jetson.md

@ -287,7 +287,7 @@ YOLOv8 benchmarks were run by the Ultralytics team on 10 different model formats
Even though all model exports are working with NVIDIA Jetson, we have only included **PyTorch, TorchScript, TensorRT** for the comparison chart below because, they make use of the GPU on the Jetson and are guaranteed to produce the best results. All the other exports only utilize the CPU and the performance is not as good as the above three. You can find benchmarks for all exports in the section after this chart.
<div style="text-align: center;">
<img width="800" src="https://github.com/ultralytics/docs/releases/download/0/nvidia-jetson-ecosystem-1.avif" alt="NVIDIA Jetson Ecosystem">
<img width="800" src="https://github.com/ultralytics/docs/releases/download/0/nvidia-jetson-ecosystem-2.avif" alt="NVIDIA Jetson Ecosystem">
</div>
### Detailed Comparison Table
@ -299,12 +299,14 @@ The below table represents the benchmark results for five different models (YOLO
=== "YOLOv8n"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|---------------|--------|-----------|-------------|------------------------|
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 6.2 | 0.6381 | 14.3 |
| TorchScript | ✅ | 12.4 | 0.6117 | 13.3 |
| ONNX | ✅ | 12.2 | 0.6092 | 70.6 |
| OpenVINO | ✅ | 12.3 | 0.6092 | 104.2 |
| TensorRT | ✅ | 13.6 | 0.6117 | 8.9 |
| TensorRT (FP32) | ✅ | 16.1 | 0.6091 | 8.01 |
| TensorRT (FP16) | ✅ | 9.2 | 0.6093 | 4.55 |
| TensorRT (INT8) | ✅ | 5.9 | 0.2759 | 4.09 |
| TF SavedModel | ✅ | 30.6 | 0.6092 | 141.74 |
| TF GraphDef | ✅ | 12.3 | 0.6092 | 199.93 |
| TF Lite | ✅ | 12.3 | 0.6092 | 349.18 |
@ -314,12 +316,14 @@ The below table represents the benchmark results for five different models (YOLO
=== "YOLOv8s"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|---------------|--------|-----------|-------------|------------------------|
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 21.5 | 0.6967 | 18 |
| TorchScript | ✅ | 43.0 | 0.7136 | 23.81 |
| ONNX | ✅ | 42.8 | 0.7136 | 185.55 |
| OpenVINO | ✅ | 42.9 | 0.7136 | 243.97 |
| TensorRT | ✅ | 44.0 | 0.7136 | 14.82 |
| TensorRT (FP32) | ✅ | 46.4 | 0.7136 | 14.01 |
| TensorRT (FP16) | ✅ | 24.2 | 0.722 | 7.16 |
| TensorRT (INT8) | ✅ | 13.7 | 0.4233 | 5.49 |
| TF SavedModel | ✅ | 107 | 0.7136 | 260.03 |
| TF GraphDef | ✅ | 42.8 | 0.7136 | 423.4 |
| TF Lite | ✅ | 42.8 | 0.7136 | 1046.64 |
@ -329,12 +333,14 @@ The below table represents the benchmark results for five different models (YOLO
=== "YOLOv8m"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|---------------|--------|-----------|-------------|------------------------|
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 49.7 | 0.7370 | 36.4 |
| TorchScript | ✅ | 99.2 | 0.7285 | 53.58 |
| ONNX | ✅ | 99 | 0.7280 | 452.09 |
| OpenVINO | ✅ | 99.1 | 0.7280 | 544.36 |
| TensorRT | ✅ | 100.3 | 0.7285 | 33.21 |
| TensorRT (FP32) | ✅ | 102.4 | 0.7285 | 31.51 |
| TensorRT (FP16) | ✅ | 52.6 | 0.7324 | 14.88 |
| TensorRT (INT8) | ✅ | 28.6 | 0.3283 | 10.89 |
| TF SavedModel | ✅ | 247.5 | 0.7280 | 543.65 |
| TF GraphDef | ✅ | 99 | 0.7280 | 906.63 |
| TF Lite | ✅ | 99 | 0.7280 | 2758.08 |
@ -344,12 +350,14 @@ The below table represents the benchmark results for five different models (YOLO
=== "YOLOv8l"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|---------------|--------|-----------|-------------|------------------------|
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 83.7 | 0.7768 | 61.3 |
| TorchScript | ✅ | 167.2 | 0.7554 | 87.9 |
| ONNX | ✅ | 166.8 | 0.7551 | 852.29 |
| OpenVINO | ✅ | 167 | 0.7551 | 1012.6 |
| TensorRT | ✅ | 168.4 | 0.7554 | 51.23 |
| TensorRT (FP32) | ✅ | 170.5 | 0.7554 | 49.79 |
| TensorRT (FP16) | ✅ | 86.1 | 0.7535 | 22.89 |
| TensorRT (INT8) | ✅ | 46.4 | 0.4048 | 14.61 |
| TF SavedModel | ✅ | 417.2 | 0.7551 | 990.45 |
| TF GraphDef | ✅ | 166.9 | 0.7551 | 1649.86 |
| TF Lite | ✅ | 166.9 | 0.7551 | 5652.37 |
@ -359,12 +367,14 @@ The below table represents the benchmark results for five different models (YOLO
=== "YOLOv8x"
| Format | Status | Size on disk (MB) | mAP50-95(B) | Inference time (ms/im) |
|---------------|--------|-----------|-------------|------------------------|
|-----------------|--------|-------------------|-------------|------------------------|
| PyTorch | ✅ | 130.5 | 0.7759 | 93 |
| TorchScript | ✅ | 260.7 | 0.7472 | 135.1 |
| ONNX | ✅ | 260.4 | 0.7479 | 1296.13 |
| OpenVINO | ✅ | 260.6 | 0.7479 | 1502.15 |
| TensorRT | ✅ | 261.8 | 0.7469 | 84.53 |
| TensorRT (FP32) | ✅ | 264.0 | 0.7469 | 80.01 |
| TensorRT (FP16) | ✅ | 133.3 | 0.7513 | 40.76 |
| TensorRT (INT8) | ✅ | 70.2 | 0.4277 | 22.08 |
| TF SavedModel | ✅ | 651.1 | 0.7479 | 1451.76 |
| TF GraphDef | ✅ | 260.5 | 0.7479 | 4029.36 |
| TF Lite | ✅ | 260.4 | 0.7479 | 8772.86 |

Loading…
Cancel
Save