pull/8571/head
Laughing-q 9 months ago
parent 586a5376d2
commit f79bed1b36
  1. 24
      docs/en/models/yolov9.md
  2. 0
      ultralytics/cfg/models/v9/yolov9c.yaml
  3. 0
      ultralytics/cfg/models/v9/yolov9e.yaml
  4. 1
      ultralytics/utils/downloads.py

@ -94,11 +94,11 @@ This example provides simple YOLOv9 training and inference examples. For full do
```python
from ultralytics import YOLO
# Build a YOLOv9-c model from scratch
model = YOLO('yolov9-c.yaml')
# Build a YOLOv9c model from scratch
model = YOLO('yolov9c.yaml')
# Build a YOLOv9-c model from pretrained weight
model = YOLO('yolov9-c.pt')
# Build a YOLOv9c model from pretrained weight
model = YOLO('yolov9c.pt')
# Display model information (optional)
model.info()
@ -106,7 +106,7 @@ This example provides simple YOLOv9 training and inference examples. For full do
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv9-c model on the 'bus.jpg' image
# Run inference with the YOLOv9c model on the 'bus.jpg' image
results = model('path/to/bus.jpg')
```
@ -115,11 +115,11 @@ This example provides simple YOLOv9 training and inference examples. For full do
CLI commands are available to directly run the models:
```bash
# Build a YOLOv9-c model from scratch and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolov9-c.yaml data=coco8.yaml epochs=100 imgsz=640
# Build a YOLOv9c model from scratch and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolov9c.yaml data=coco8.yaml epochs=100 imgsz=640
# Build a YOLOv9-c model from scratch and run inference on the 'bus.jpg' image
yolo predict model=yolov9-c.yaml source=path/to/bus.jpg
# Build a YOLOv9c model from scratch and run inference on the 'bus.jpg' image
yolo predict model=yolov9c.yaml source=path/to/bus.jpg
```
## Supported Tasks and Modes
@ -127,9 +127,9 @@ This example provides simple YOLOv9 training and inference examples. For full do
The YOLOv9 series offers a range of models, each optimized for high-performance [Object Detection](../tasks/detect.md). These models cater to varying computational needs and accuracy requirements, making them versatile for a wide array of applications.
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
|------------|------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------|----------|--------|
| YOLOv9-C | [yolov9-c.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov9-c.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv9-E | [yolov9-e.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov9-e.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------|-----------|------------|----------|--------|
| YOLOv9-C | [yolov9c.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov9c.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv9-E | [yolov9e.pt](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov9e.pt) | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
This table provides a detailed overview of the YOLOv9 model variants, highlighting their capabilities in object detection tasks and their compatibility with various operational modes such as [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md). This comprehensive support ensures that users can fully leverage the capabilities of YOLOv9 models in a broad range of object detection scenarios.

@ -21,6 +21,7 @@ GITHUB_ASSETS_NAMES = (
+ [f"yolov5{k}{resolution}u.pt" for k in "nsmlx" for resolution in ("", "6")]
+ [f"yolov3{k}u.pt" for k in ("", "-spp", "-tiny")]
+ [f"yolov8{k}-world.pt" for k in "sml"]
+ [f"yolov9{k}.pt" for k in "ce"]
+ [f"yolo_nas_{k}.pt" for k in "sml"]
+ [f"sam_{k}.pt" for k in "bl"]
+ [f"FastSAM-{k}.pt" for k in "sx"]

Loading…
Cancel
Save