diff --git a/docs/en/usage/simple-utilities.md b/docs/en/usage/simple-utilities.md index ed59f8dbed..a5636ca635 100644 --- a/docs/en/usage/simple-utilities.md +++ b/docs/en/usage/simple-utilities.md @@ -460,15 +460,16 @@ for obb in obb_boxes: image_with_obb = ann.result() ``` -#### Bounding Boxes Circle Annotation ([Circle Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.circle_label)) +#### Bounding Boxes Circle Annotation [Circle Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.circle_label) ```python import cv2 from ultralytics import YOLO -from ultralytics.utils.plotting import Annotator, colors +from ultralytics.utils.plotting import Annotator model = YOLO("yolov8s.pt") +names = model.names cap = cv2.VideoCapture("path/to/video/file.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) @@ -479,15 +480,13 @@ while True: if not ret: break - annotator = Annotator(im0, line_width=2) - + annotator = Annotator(im0) results = model.predict(im0) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() for box, cls in zip(boxes, clss): - x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) - annotator.circle_label(box, label=model.names[int(cls)], color=colors(int(cls), True)) + annotator.circle_label(box, label=names[int(cls)]) writer.write(im0) cv2.imshow("Ultralytics circle annotation", im0) @@ -500,15 +499,16 @@ cap.release() cv2.destroyAllWindows() ``` -#### Bounding Boxes Text Annotation ([Text Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.text_label)) +#### Bounding Boxes Text Annotation [Text Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.text_label) ```python import cv2 from ultralytics import YOLO -from ultralytics.utils.plotting import Annotator, colors +from ultralytics.utils.plotting import Annotator model = YOLO("yolov8s.pt") +names = model.names cap = cv2.VideoCapture("path/to/video/file.mp4") w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) @@ -519,15 +519,13 @@ while True: if not ret: break - annotator = Annotator(im0, line_width=2) - + annotator = Annotator(im0) results = model.predict(im0) boxes = results[0].boxes.xyxy.cpu() clss = results[0].boxes.cls.cpu().tolist() for box, cls in zip(boxes, clss): - x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) - annotator.text_label(box, label=model.names[int(cls)], color=colors(int(cls), True)) + annotator.text_label(box, label=names[int(cls)]) writer.write(im0) cv2.imshow("Ultralytics text annotation", im0)