Fix YOLO12 cfg links (#19332)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
pull/19333/head
Glenn Jocher 3 weeks ago committed by GitHub
parent 216e6fef58
commit f3838b2441
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 35
      docs/en/models/yolo12.md

@ -10,6 +10,8 @@ keywords: YOLO12, attention-centric object detection, YOLO series, Ultralytics,
YOLO12 introduces an attention-centric architecture that departs from the traditional CNN-based approaches used in previous YOLO models, yet retains the real-time inference speed essential for many applications. This model achieves state-of-the-art object detection accuracy through novel methodological innovations in attention mechanisms and overall network architecture, while maintaining real-time performance.
![YOLO12 comparison visualization](https://github.com/user-attachments/assets/8009d90f-b43c-4a96-bb89-47ef843e7144)
## Key Features
- **Area Attention Mechanism**: A new self-attention approach that processes large receptive fields efficiently. It divides [feature maps](https://www.ultralytics.com/glossary/feature-maps) into _l_ equal-sized regions (defaulting to 4), either horizontally or vertically, avoiding complex operations and maintaining a large effective receptive field. This significantly reduces computational cost compared to standard self-attention.
@ -31,32 +33,27 @@ YOLO12 introduces an attention-centric architecture that departs from the tradit
YOLO12 supports a variety of computer vision tasks. The table below shows task support and the operational modes (Inference, Validation, Training, and Export) enabled for each:
| Model Type | Task | Inference | Validation | Training | Export |
| ----------------------------------------------------------------------------------------------------------------- | -------------------------------------- | --------- | ---------- | -------- | ------ |
| [YOLO12](https://github.com/ultralytics/ultralytics/blob/yolov12/ultralytics/cfg/models/12/yolo12.yaml) | [Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-seg](https://github.com/ultralytics/ultralytics/blob/yolov12/ultralytics/cfg/models/12/yolo12-seg.yaml) | [Segmentation](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-pose](https://github.com/ultralytics/ultralytics/blob/yolov12/ultralytics/cfg/models/12/yolo12-pose.yaml) | [Pose](../tasks/pose.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-cls](https://github.com/ultralytics/ultralytics/blob/yolov12/ultralytics/cfg/models/12/yolo12-cls.yaml) | [Classification](../tasks/classify.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-obb](https://github.com/ultralytics/ultralytics/blob/yolov12/ultralytics/cfg/models/12/yolo12-obb.yaml) | [OBB](../tasks/obb.md) | ✅ | ✅ | ✅ | ✅ |
| Model Type | Task | Inference | Validation | Training | Export |
| -------------------------------------------------------------------------------------------------------------- | -------------------------------------- | --------- | ---------- | -------- | ------ |
| [YOLO12](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/12/yolo12.yaml) | [Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-seg](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/12/yolo12-seg.yaml) | [Segmentation](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-pose](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/12/yolo12-pose.yaml) | [Pose](../tasks/pose.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-cls](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/12/yolo12-cls.yaml) | [Classification](../tasks/classify.md) | ✅ | ✅ | ✅ | ✅ |
| [YOLO12-obb](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/12/yolo12-obb.yaml) | [OBB](../tasks/obb.md) | ✅ | ✅ | ✅ | ✅ |
## Performance Metrics
<script async src="https://cdn.jsdelivr.net/npm/chart.js@3.9.1/dist/chart.min.js"></script>
<script defer src="../../javascript/benchmark.js"></script>
<canvas id="modelComparisonChart" width="1024" height="400" active-models='["YOLO11"]'></canvas>
YOLO12 demonstrates significant [accuracy](https://www.ultralytics.com/glossary/accuracy) improvements across all model scales, with some trade-offs in speed compared to the _fastest_ prior YOLO models. Below are quantitative results for [object detection](https://www.ultralytics.com/glossary/object-detection) on the COCO validation dataset:
### Detection Performance (COCO val2017)
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) | Comparison<br><sup>(mAP/Speed) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | --------------------------------- | ------------------ | ----------------- | -------------------------------- |
| [YOLO12n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12n.pt) | 640 | 40.6 | - | 1.64 | 2.6 | 6.5 | +2.1% / -9% (vs. YOLOv10n) |
| [YOLO12s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12s.pt) | 640 | 48.0 | - | 2.61 | 9.3 | 21.4 | +0.1% / +42% (vs. RT-DETRv2-R18) |
| [YOLO12m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12m.pt) | 640 | 52.5 | - | 4.86 | 20.2 | 67.5 | +1.0% / +3% (vs. YOLO11m) |
| [YOLO12l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12l.pt) | 640 | 53.7 | - | 6.77 | 26.4 | 88.9 | +0.4% / -8% (vs. YOLO11l) |
| [YOLO12x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12x.pt) | 640 | 55.2 | - | 11.79 | 59.1 | 199.0 | +0.6% / -4% (vs. YOLO11x) |
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) | Comparison<br><sup>(mAP/Speed) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | --------------------------------- | ------------------ | ----------------- | ------------------------------ |
| [YOLO12n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12n.pt) | 640 | 40.6 | - | 1.64 | 2.6 | 6.5 | +2.1%/-9% (vs. YOLOv10n) |
| [YOLO12s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12s.pt) | 640 | 48.0 | - | 2.61 | 9.3 | 21.4 | +0.1%/+42% (vs. RT-DETRv2) |
| [YOLO12m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12m.pt) | 640 | 52.5 | - | 4.86 | 20.2 | 67.5 | +1.0%/+3% (vs. YOLO11m) |
| [YOLO12l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12l.pt) | 640 | 53.7 | - | 6.77 | 26.4 | 88.9 | +0.4%/-8% (vs. YOLO11l) |
| [YOLO12x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo12x.pt) | 640 | 55.2 | - | 11.79 | 59.1 | 199.0 | +0.6%/-4% (vs. YOLO11x) |
- Inference speed measured on an NVIDIA T4 GPU with TensorRT FP16 [precision](https://www.ultralytics.com/glossary/precision).
- Comparisons show the relative improvement in mAP and the percentage change in speed (positive indicates faster; negative indicates slower). Comparisons are made against published results for YOLOv10, YOLO11, and RT-DETR where available.

Loading…
Cancel
Save