@ -153,14 +153,18 @@ Each subset comprises images categorized into 10 classes, with their annotations
If you use the CIFAR-10 dataset in your research or development projects, make sure to cite the following paper:
```bibtex
@TECHREPORT{Krizhevsky09learningmultiple,
!!! Quote ""
=== "BibTeX"
```bibtex
@TECHREPORT{Krizhevsky09learningmultiple,
author={Alex Krizhevsky},
title={Learning multiple layers of features from tiny images},
institution={},
year={2009}
}
```
}
```
Acknowledging the dataset's creators helps support continued research and development in the field. For more details, see the [citations and acknowledgments](#citations-and-acknowledgments) section.
It's important to note that using smaller images will likely yield lower performance in terms of classification accuracy. However, it's an excellent way to iterate quickly in the early stages of model development and prototyping.
Parking management with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) ensures efficient and safe parking by organizing spaces and monitoring availability. YOLOv8 can improve parking lot management through real-time vehicle detection, and insights into parking occupancy.