Fix ambiguous variable names (#13864)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Alex Pasquali <alexpasquali98@gmail.com>
pull/13867/head^2
Glenn Jocher 5 months ago committed by GitHub
parent c497732278
commit ee859ac64d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 21
      ultralytics/data/converter.py
  2. 8
      ultralytics/data/split_dota.py
  3. 1
      ultralytics/engine/model.py
  4. 13
      ultralytics/models/sam/modules/tiny_encoder.py
  5. 1
      ultralytics/nn/modules/__init__.py
  6. 1
      ultralytics/nn/modules/block.py
  7. 1
      ultralytics/solutions/__init__.py

@ -329,8 +329,7 @@ def convert_coco(
if lvis:
with open((Path(save_dir) / json_file.name.replace("lvis_v1_", "").replace(".json", ".txt")), "a") as f:
for l in image_txt:
f.write(f"{l}\n")
f.writelines(f"{line}\n" for line in image_txt)
LOGGER.info(f"{'LVIS' if lvis else 'COCO'} data converted successfully.\nResults saved to {save_dir.resolve()}")
@ -534,25 +533,25 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
sam_model = SAM(sam_model)
for l in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
h, w = l["shape"]
boxes = l["bboxes"]
for label in tqdm(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
h, w = label["shape"]
boxes = label["bboxes"]
if len(boxes) == 0: # skip empty labels
continue
boxes[:, [0, 2]] *= w
boxes[:, [1, 3]] *= h
im = cv2.imread(l["im_file"])
im = cv2.imread(label["im_file"])
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False)
l["segments"] = sam_results[0].masks.xyn
label["segments"] = sam_results[0].masks.xyn
save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
save_dir.mkdir(parents=True, exist_ok=True)
for l in dataset.labels:
for label in dataset.labels:
texts = []
lb_name = Path(l["im_file"]).with_suffix(".txt").name
lb_name = Path(label["im_file"]).with_suffix(".txt").name
txt_file = save_dir / lb_name
cls = l["cls"]
for i, s in enumerate(l["segments"]):
cls = label["cls"]
for i, s in enumerate(label["segments"]):
line = (int(cls[i]), *s.reshape(-1))
texts.append(("%g " * len(line)).rstrip() % line)
if texts:

@ -26,8 +26,8 @@ def bbox_iof(polygon1, bbox2, eps=1e-6):
bbox2 (np.ndarray): Bounding boxes, (n ,4).
"""
polygon1 = polygon1.reshape(-1, 4, 2)
lt_point = np.min(polygon1, axis=-2)
rb_point = np.max(polygon1, axis=-2)
lt_point = np.min(polygon1, axis=-2) # left-top
rb_point = np.max(polygon1, axis=-2) # right-bottom
bbox1 = np.concatenate([lt_point, rb_point], axis=-1)
lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2])
@ -35,8 +35,8 @@ def bbox_iof(polygon1, bbox2, eps=1e-6):
wh = np.clip(rb - lt, 0, np.inf)
h_overlaps = wh[..., 0] * wh[..., 1]
l, t, r, b = (bbox2[..., i] for i in range(4))
polygon2 = np.stack([l, t, r, t, r, b, l, b], axis=-1).reshape(-1, 4, 2)
left, top, right, bottom = (bbox2[..., i] for i in range(4))
polygon2 = np.stack([left, top, right, top, right, bottom, left, bottom], axis=-1).reshape(-1, 4, 2)
sg_polys1 = [Polygon(p) for p in polygon1]
sg_polys2 = [Polygon(p) for p in polygon2]

@ -142,7 +142,6 @@ class Model(nn.Module):
# Check if Triton Server model
elif self.is_triton_model(model):
self.model_name = self.model = model
self.task = task
return
# Load or create new YOLO model

@ -384,8 +384,8 @@ class TinyViTBlock(nn.Module):
convolution.
"""
h, w = self.input_resolution
b, l, c = x.shape
assert l == h * w, "input feature has wrong size"
b, hw, c = x.shape # batch, height*width, channels
assert hw == h * w, "input feature has wrong size"
res_x = x
if h == self.window_size and w == self.window_size:
x = self.attn(x)
@ -394,13 +394,13 @@ class TinyViTBlock(nn.Module):
pad_b = (self.window_size - h % self.window_size) % self.window_size
pad_r = (self.window_size - w % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = h + pad_b, w + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# Window partition
x = (
x.view(b, nH, self.window_size, nW, self.window_size, c)
@ -408,19 +408,18 @@ class TinyViTBlock(nn.Module):
.reshape(b * nH * nW, self.window_size * self.window_size, c)
)
x = self.attn(x)
# Window reverse
x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
if padding:
x = x[:, :h, :w].contiguous()
x = x.view(b, l, c)
x = x.view(b, hw, c)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(b, c, h, w)
x = self.local_conv(x)
x = x.view(b, c, l).transpose(1, 2)
x = x.view(b, c, hw).transpose(1, 2)
return x + self.drop_path(self.mlp(x))

@ -133,6 +133,7 @@ __all__ = (
"ResNetLayer",
"OBB",
"WorldDetect",
"v10Detect",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",

@ -40,7 +40,6 @@ __all__ = (
"SPPELAN",
"CBFuse",
"CBLinear",
"Silence",
"RepVGGDW",
"CIB",
"C2fCIB",

@ -15,6 +15,7 @@ __all__ = (
"Heatmap",
"ObjectCounter",
"ParkingManagement",
"ParkingPtsSelection",
"QueueManager",
"SpeedEstimator",
"Analytics",

Loading…
Cancel
Save